Low-Cost Contact Formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

Kim, D.S.;Lee, E.J.;Kim, J.;Lee, S.H.

  • Published : 20050500

Abstract

High-efficiency silicon solar cells have potential applications on mobile electronic and electrical vehicles. The fabrication processes for high-efficiency cells necessitate complicated processes and expensive materials. Ti/Pd/Ag metal contacts have only been used in limited areas in spite of their good stability and low contact resistance because of expensive materials and processes. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance, resulting in an energy conversion efficiency of 20.2 % on a 0.5 ${\Omega}cm$ FZ(Float Zone) wafer. A tapered contact structure has been applied to large-area, $6.7\;{\times}\;6.7\;cm^2$, solar cells in order to reduce power loss due to the front metal contact. The tapered metal contact is realized by electroplating and results in $45\;cm^2$ solar cells with efficiencies of 21.4 % on 2 ${\Omega}cm$ FZ wafer.

Keywords

References

  1. J. Y. Lee and S. H. Lee, J. Korean Phys. Soc. 45, 558 (2004)
  2. J. Kim, Hong. J and S. H. Lee, J. Korean Phys. Soc. 44, 479 (2004)
  3. J. Zhao, A. Wang and M. A.Green, Prog. Photovolt.: Res. Appl. 7, 471 (1999) https://doi.org/10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
  4. Paul D. Maycock, Photovoltaic Technology, Performance, and Cost 1995-2010 (PV Energy Systems, Inc., Warrenton, 2000)
  5. S. P. Murarka, Silicides for VLSI Applications (Academic press, New York, 1983), p.78
  6. Y. Hu and S. P. Tay, J. Vac. Sci. Technol. A 16, 1820 (1998) https://doi.org/10.1116/1.581114
  7. J-H. Guo and J. E. Cotter, Sol. Ener. Mat. & Sol. Cells 86, 485 (2005) https://doi.org/10.1016/j.solmat.2004.09.001
  8. B. S. Richards, Prog. Photovolt.: Res. Appl. 12, 253 (2004) https://doi.org/10.1002/pip.529
  9. H. B. Serreze, Proceeding of 13th IEEE PVSC(Washington, DC, June, 1978), p.609
  10. I. S. Moon, D. S. Kim and S. H. Lee, Jpn. J. Appl. Phys. 41, 2900 (2002) https://doi.org/10.1143/JJAP.41.2900
  11. S. R. Das, D.-X. Xu , M. Nournia, L. LeBrun and A. Naem, Proceedings of Materials Research Society Symposium, (San Fransico, 1996), p. 541
  12. J. Zhao, A. Wang, X. Dai, M. A. Green and S. R. Wenham, Proceeding of 22nd IEEE PVSC, (New York, Oct, 1991), p. 399
  13. Dieter K. Schroder and Daniel L. Meier, IEEE Trans. Electron Dev. ED31:5, 637 (1984)
  14. M. A. Green, Solar Cells 7, 337 (1982) https://doi.org/10.1016/0379-6787(82)90057-6
  15. A. Cuevas and D. A. Russel, Prog. Photovolt.: Res. Appl. 8, 603 (2000) https://doi.org/10.1002/1099-159X(200011/12)8:6<603::AID-PIP333>3.0.CO;2-M