Comparison of the elution patterns for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs) and dioxin-like polychlorinated biphenyls (PCBs) by manual open columns and automatic parallel LC columns

수동 및 자동화 액체 크로마토그래피 칼럼에 의한 PCDDs/Fs 및 다이옥신과 유사한 PCBs의 용출 패턴 비교

  • Ahn, Yun Gyong (Hazardous Substance Research Team, Korea Basic Science Institute) ;
  • Shin, Jeoung Hwa (Hazardous Substance Research Team, Korea Basic Science Institute) ;
  • Yoo, Sun Young (Hazardous Substance Research Team, Korea Basic Science Institute) ;
  • Khim, Jeehyeong (Department of Civil Environment Engineering, Korea University) ;
  • Hong, Jongki (Hazardous Substance Research Team, Korea Basic Science Institute)
  • 안윤경 (한국기초과학지원연구원, 유해물질분석연구팀) ;
  • 신정화 (한국기초과학지원연구원, 유해물질분석연구팀) ;
  • 유선영 (한국기초과학지원연구원, 유해물질분석연구팀) ;
  • 김지형 (고려대학교 사회환경시스템공학과) ;
  • 홍종기 (한국기초과학지원연구원, 유해물질분석연구팀)
  • Received : 2004.09.30
  • Accepted : 2004.10.19
  • Published : 2005.02.25

Abstract

The elution patterns of seventeen 2,3,7,8-substituted PCDDs/Fs and 12 dioxin-like PCBs were studied by both manual open columns and automatic parallel LC columns in cleanup procedure. PCDDs/Fs and non-ortho-PCBs from other mono-ortho-PCBs were separated on automatic LC column, whereas they were not separated on an open manual column. The elution study on two cleanup methods was carried out using the PAR solution of unlabeled congeners and checked the recovery of each congener. Total recoveries of cleanup fractionation were ranged between 61.9 ~ 96.0% for PCDDs/Fs and 70.4 ~ 79.0% for PCBs by manual open columns and 71.8 ~ 104.5% for PCDDs/Fs and 61.3-120.3% for PCBs by automatic parallel LC columns, respectively. Unfortunately, #169-HxCB and 1,2,3,7,8-PeCDD were not separated on DB-5MS capillary column. The ions of 1,2,3,7,8-PeCDD were selected at M/M+2 instead of M+2/M+4 suggested by EPA method 1613. It is possible to discriminate 1,2,3,7,8-PeCDD and PCB #169 in HRGC/HRMS analysis.

본 연구에서는 다이옥신류의 정제과정으로 수동 및 자동 액체 크로마토그래피 칼럼을 이용하여 PCDDs/Fs 17종과 다이옥신과 유사한 PCB 12종의 용출 패턴을 비교, 분석하였다. 수동 알루미나 칼럼에서는 29종의 화합물이 같이 용출되어 분리되지 않았으나 자동화 칼럼의 경우 mono-ortho-PCB로부터 PCDDs/Fs 및 non-ortho PCB를 분리할 수 있었다. PAR (Precision And Recovery) 표준용액으로 조사한 다이옥신류와 PCB의 회수율은 각각 수동 액체 크로마토그래피 칼럼에서 61.9 ~ 96.0%, 70.4 ~ 79.0%였으며, 자동화 칼럼의 경우는 71.8 ~ 104.5%, 61.3 ~ 120.3% 이었다. DB-5MS 칼럼에서 분리되지 않는 #169-HxCB와 1,2,3,7,8-PeCDD은 EPA 1613 방법 중 선택이온의 비를 M+2/M+4 대신 M/M+2로 변경하여 HRGC/HRMS 분석에서 1,2,3,7,8-PeCDD와 #169-HxCB의 구분이 가능하도록 하였다.

Keywords

References

  1. A. Schecter, M. Pavuk, R. Malisch, J. J. Ryan, J. Toxicol. Environ. Health A, 66, 1391-1404(2003) https://doi.org/10.1080/15287390306416
  2. J. Knutzen, B. Bjerkeng, K. Naes, M. Schlabach, Chemosphere, 52, 745-760(2003) https://doi.org/10.1016/S0045-6535(03)00102-4
  3. E. Eljarrat, J. Caixach, J. Rivera, Chemosphere, 51, 595-601(2003) https://doi.org/10.1016/S0045-6535(02)00785-3
  4. D. Santillo, A. Fernandes, R. Stringer, R. Alcock, M. Rose, S. White, K. Jones, P. Johnston, Food Addit. Contam., 20, 281-290(2003) https://doi.org/10.1080/0265203021000057494
  5. M. Schuhmacher, M. Rodriguez-Larena, J. Diaz- Ferrero, J. L. Domingo, Chemosphere, 48, 187-193 (2002) https://doi.org/10.1016/S0045-6535(02)00079-6
  6. P. Korytar, C. Danielsson, P.E.G. Leonards, P. Haglund, J. de Boer, U. A. Th. Brinkman, J. Chromatogr. A, 1038, 189-199(2004) https://doi.org/10.1016/j.chroma.2004.03.026
  7. C.-Y. Chen, J. R. Hass, P. W. Albro, Environ. Sci. Technol., 34, 5172-5176(2000) https://doi.org/10.1021/es001305g
  8. J.-G Kim, J.-S Lee, H,-T Hong, J. Korean Soc. Environ. Eng., 19, 983-996(1997)
  9. L. Ramos, L. M. Hernandez, M. J. Gonzalez, J. Chromatogr. A, 759, 127-137(1997) https://doi.org/10.1016/S0021-9673(96)00759-5
  10. A. Kocan, J. Petrik, J. Chovancova, B. Drobna, J. Chromatogr. A, 665, 139-153(1994) https://doi.org/10.1016/0021-9673(94)87042-X
  11. K. P. Feltz, D. E. Tillitt, R. W. Gale, P. H. Peterman,, Environ. Sci. Technol., 29, 709-718 (1995) https://doi.org/10.1021/es00003a019
  12. E. Abad, J. Saulo, J. Caixach, J. Rivera, J. Chromatogr. A, 893, 383-391(2000) https://doi.org/10.1016/S0021-9673(00)00760-3
  13. P. Furst, C. Furst, W. Groebel, Chemosphere, 20, 787-792(1990) https://doi.org/10.1016/0045-6535(90)90183-T
  14. P. O'Keefe, L. Wilson, C. Buckingham, L. Rafferty, Chemosphere, 20, 1277-1284(1990) https://doi.org/10.1016/0045-6535(90)90273-V
  15. L.-O. Kjeller, S.-E. Kulp, S. Bergek, M. Bostrom, P.-A. Bergqvist, C. Rappe, Chemosphere, 20, 1489-1496(1990) https://doi.org/10.1016/0045-6535(90)90302-A
  16. J. Beens, R. Tijssen, J. Blomberg, J. Chromatogr. A, 822, 233-251(1998) https://doi.org/10.1016/S0021-9673(98)00649-9
  17. M. Harju, C. Danielsson, P. Haglund, J. Chromatogr. A, 1019, 111-126(2003) https://doi.org/10.1016/j.chroma.2003.08.100
  18. P. Korytar, L. L. P. van Stee, P. E. G. Leonards, J. de Boer, U. A. Th. Brinkman, J. Chromatogr A, 958, 179-189(2003) https://doi.org/10.1016/S0021-9673(03)00438-2
  19. EPA, Method 1613, Tetra through octachlorinated dioxins and furans by isotopic dilution HRGC-HRMS, Washington DC, 1994
  20. C. Schroijen, I. Windal, L. Goeyens, W. Baeyens, Talanta, 63, 1261-1268(2004) https://doi.org/10.1016/j.talanta.2004.05.036
  21. A. Kocan, J. Petrik, J. Chovancova, B. Drobna, J. Chromatogr. A, 665, 139-153(1994) https://doi.org/10.1016/0021-9673(94)87042-X
  22. Y. Kemmochi, K. Tsutsumi, A. Arikawa, H. Nakazawa, J. Chromatogr. A, 977, 155-161(2002) https://doi.org/10.1016/S0021-9673(02)01272-4