Design of Bulk Metallic Glasses with High Glass Forming Ability and Enhancement of Plasticity in Metallic Glass Matrix Composites: A Review

Park, E.S.;Kim, D.H.

  • Published : 20050200

Abstract

To overcome some of the limits of existing metallic alloys, a new alloy design concept has been introduced recently in order to control the crystallinity, i.e. to utilize crystalline, quasicrystalline, and amorphous structures. In particular, bulk metallic glasses (BMGs) receive great attention because of their unique properties due to their different atomic configuration. Recently, significant progress in enhancing glass forming ability (GFA) has led to the fabrication of BMGs having potential for application as structural and functional materials. Moreover, successful design of BMG matrix composite microstructure suggests that the plasticity of BMGs can be controlled properly. In this review article, we introduce recent research results on the design of BMGs with high GFA and on the enhancement of plasticity in metallic glass matrix composites.

Keywords

References

  1. W. Klement, R. H. Willens, and P. Duwez, Nature 187, 869 (1960) https://doi.org/10.1038/187960a0
  2. A. Inoue, Acta mater. 48, 279 (2000) https://doi.org/10.1016/S1359-6454(99)00300-6
  3. A. Inoue and T. Zhang, Mater. Trans. 37, 185 (1996)
  4. X. Wang, I. Yoshii, A. Inoue, Y. H. Kim, and I. B. Kim, Mater. Trans. 40, 1130 (1999)
  5. A. Inoue, N. Nishiyama, and T. Matsuda, Mater.Trans. 37, 181 (1996)
  6. H. K. Lim, S. Yi, W. T. Kim, D. H. Kim, S. H. Kim, and N. J. Kim, Scripta mater. 44, 1635 (2001) https://doi.org/10.1016/S1359-6462(00)00555-8
  7. Y. C. Jung and K. Nakai, Met. Mater. -Int. 9, 337 (2003)
  8. X. H. Lin and W. L. Johnson, J. Appl. Phys. 78, 6514 (1995)
  9. Y. C. Kim, S. Yi, W. T. Kim, and D. H. Kim, Materials Science Forum 360-362, 67 (2001)
  10. E. S. Park and D. H. Kim, J. Mater. Res. 19, 685 (2004)
  11. H. G. Kang, E. S. Park, W. T. Kim, D. H. Kim, and H. K. Cho, Mater.Trans. 41, 846 (2000)
  12. G. He, J. Eckert, and W. LOser, Acta mater. 51, 1630 (2003)
  13. G. He, J. Eckert, W. Löser, and L. Schultz, Nature Mater. 2 , 33 (2003) https://doi.org/10.1038/nmat778
  14. H. Choi-Yim, R. Busch, U. Köster, and W. L. Johnson, Acta mater. 47, 2455 (1999) https://doi.org/10.1016/S1359-6454(99)00103-2
  15. C. P. Kim, R. Bush, A. Masuhr, H. Choi-Yim, and W. L. Johnson, Appl. Phys. Lett. 79, 1456 (2001) https://doi.org/10.1063/1.1390317
  16. C. Fan, R. T. Ott, and T. C. Hufnagel, Appl. Phys. Lett. 81, 1020 (2002) https://doi.org/10.1063/1.1498864
  17. G. He, W. Löser, and J. Eckert, Scripta mater. 48, 1531 (2003)
  18. C. C. Hays, C. P. Kim, and W. L. Johnson, Phys. Rev. Lett. 84, 2901 (2000) https://doi.org/10.1103/PhysRevLett.84.2901
  19. F. Szuecs, C. P. Kim, and W. L. Johnson, Acta mater. 49, 1507 (2001) https://doi.org/10.1016/S1359-6454(01)00068-4
  20. J. K. Lee, S. H. Kim, W. T. Kim, and D. H. Kim, Met. Mater. -Int. 7, 187 (2001)
  21. G. He, W. LOser, J. Eckert, and L. Schultz, J. Mater. Res. 17, 3015 (2002) https://doi.org/10.1557/JMR.2002.0439
  22. Y. Kawamura, H. Kato, A. Inoue, and T. Masumoto, Int. J. Powder Met. 30, 50 (1997)
  23. T. Zhang and A. Inoue, Mater. Trans. 40, 301 (1999)
  24. S. Yi, T. G. Park, and D. H. Kim, J. Mater. Res. 15, 2429 (2000)
  25. D. J. Sordelet, E. Rozhkova, P. Huang, P. B. Wheelock, M. F. Besser, M. J. Kramer, M. Calvo-Dahlborg and U. Dalhborg, J. Mater. Res. 17, 186 (2002) https://doi.org/10.1557/JMR.2002.0028
  26. M. H. Lee, D. H. Bae, W. T. Kim, D. H. Kim, and D. J. Sordelet, J. Non-Cryst. Solids 315, 89 (2003) https://doi.org/10.1016/S0022-3093(02)01424-2
  27. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta mater. 49, 2645 (2001) https://doi.org/10.1016/S1359-6454(01)00181-1
  28. A. Inoue and W. Zhang, Mater. Trans. 43, 2921 (2002) https://doi.org/10.2320/matertrans.43.2921
  29. H. Choi-Yim, D. H. Xu, and W. L. Johnson, Appl. Phys. Lett. 82, 1030 (2003) https://doi.org/10.1063/1.1544434
  30. W. Zhang, A. Inoue, Mater. Trans. 43, 2342 (2002) https://doi.org/10.2320/matertrans.43.2342
  31. M. H. Lee, D. H. Bae, W. T. Kim, and D. H. Kim, Mater. Trans. 44, 2084 (2003) https://doi.org/10.2320/matertrans.44.2084
  32. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. 33, 937 (1992)
  33. H. Men and D. H. Kim, J. of Mater. Res. 18, 1502 (2003)
  34. K. Amiya and A. Inoue, Mater. Trans. 43, 81 (2002) https://doi.org/10.2320/matertrans.43.81
  35. K. Amiya and A. Inoue, Mater. Trans. 43, 2578 (2002) https://doi.org/10.2320/matertrans.43.2578
  36. J.-H. Kim, J. S. Park, E. S. Park, W. T. Kim, and D. H. Kim, Mat. Mater. -Int. in press
  37. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams 6 (eds., Thaddeus B. Massalski), p. 7522, ASM, Materials Park, OH (1995)
  38. A. Inoue, T. Negishi, H. M. Kimura, T. Zhang, and R. Yavari, Mater. Trans. 39, 318 (1998)
  39. E. S. Park, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids submitted
  40. S. G. Kim, A. Inoue, and T. Masumoto, Mater. Trans. 31, 929 (1990)
  41. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, Mater. Trans. 32, 609 (1991)
  42. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. 33, 937 (1992)
  43. E. S. Park, H. G. Kang, W. T. Kim and D. H. Kim, J. Non-Cryst. Solids 279, 154 (2001) https://doi.org/10.1016/S0022-3093(00)00412-9
  44. K. Amiya and A. Inoue, Mater. Trans. 41, 1460 (2000)
  45. K. Amiya and A. Inoue, Mater. Trans. 42, 543 (2001) https://doi.org/10.2320/matertrans.42.543
  46. H. Men, Z. Q. Hu, and J. Xu, Scripta. mater. 46, 699 (2002)
  47. F. E. Luborsky, Amorphous Metallic Glass, p.4, Butterworths, London, UK (1983)
  48. R. P. Messmer, Phys. Rev. B 23, 1616 (1981)
  49. J. L. Walter, Mater. Sci. Engi. 39, 95 (1979)
  50. I. Vincze, D. S. Boudreaux, and M. Tegze, Phys. Rev. B 19, 4896 (1979)
  51. I. Vincze, F. Van der Woude, T. Kemeny, and A.S. Schaafsma, J. Magnetism magn. Mater. 15-18, 1336 (1980) https://doi.org/10.1016/0304-8853(80)90311-X
  52. D. V. Louzguine and A. Inoue, J. Mater. Res. 17, 2112 (2002) https://doi.org/10.1557/JMR.2002.0312
  53. H. Men, W. T. Kim, and D. H. Kim, Mater. Trans. 44, 2141 (2003) https://doi.org/10.2320/matertrans.44.2141
  54. E. S. Park, W. T. Kim, and D. H. Kim, Mater. Trans. 45, 2474 (2004) https://doi.org/10.2320/matertrans.45.2474
  55. T. G. Park, S. Yi, and D. H. Kim, Scripta mater. 43, 109 (2000)
  56. W. B. Kim, B. J. Ye, and S. Yi, Met. Mater. -Int. 10, 1 (2004)
  57. A. Inoue, Acta mater. 48, 279 (2000) https://doi.org/10.1016/S1359-6454(99)00300-6
  58. J. K. Lee, D. H. Bea, S. Yi, W. T. Kim, and D. H. Kim, J. Non-Crst. Solids 333, 212 (2004)
  59. J. Y. Lee, D. H. Bae, J. K. Lee, and D. H. Kim, J. Mater. Res. 19, 2221 (2004)
  60. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta mater. 50, 489 (2002) https://doi.org/10.1016/S1359-6454(01)00366-4
  61. H. Choi-Yim, R. Bush, and W. L. Johnson, J. Appl. Phys. 83, 7993 (1998)
  62. E. S. Park, H. K. Lim, W. T. Kim, and D. H. Kim, J. Non-Cryst. Solids 298, 15 (2002) https://doi.org/10.1016/S0022-3093(01)01047-X
  63. D. H. Bae, H. K. Lim, S. H. Kim, D. H. Kim, and W. T. Kim, Acta mater. 50, 1749 (2002) https://doi.org/10.1016/S1359-6454(02)00024-1
  64. E. S. Park, W. T. Kim, and D. H. Kim, Mater. Trans. 45, 2693 (2004) https://doi.org/10.2320/matertrans.45.2693
  65. E. S. Park, D. H. Kim, T. Ohkubo, and K. Hono, J. Non-Cryst. Solids, Submitted
  66. T. Zhang and A.Inoue, Mater. Trans. 39, 1001 (1998)
  67. Y. C. Kim, W. T. Kim, and D. H. Kim, Mater. Tran. 43, 1243 (2002)
  68. J. Eckert, A. Reger-Leonhard, B. Weiss, and M. Heilmaier, Mater. Sci. Eng. A 301, 1 (2001)
  69. A. Inoue, T. Zhang, M. W. Chen, and T. Sakurai, J. Mater. Res. 15, 2195 (2000) https://doi.org/10.1557/JMR.2000.0316
  70. R. D. Conner, R. B. Dandliker, and W. L. Johnson, Acta mater. 46, 6189 (1998)
  71. H. Choi-Yim and W. L. Johnson, Appl. Phys. Lett. 71, 3808 (1997) https://doi.org/10.1063/1.120512
  72. S. J. Poon, A. J. Drehman, and K. R. Lawless, Phys. Rev. Lett. 55, 2324 (1985) https://doi.org/10.1103/PhysRevLett.55.2324
  73. Y. Chen, S. J. Poon, and G. J. Shiflet, Phys. Rev. B 34, 3516 (1986)
  74. A. P. Tsai, A. Inoue, Y. Bizen, and T. Masumoto, Acta metall. 37, 1443 (1989) https://doi.org/10.1016/0001-6160(89)90176-4
  75. J. C. Holzer and K. F. Kelton, Acta metall. 39, 1833 (1991)
  76. V. V. Molokanov and V. N. Chebotnikov, J. Non-Cryst. Solids 117/118, 789 (1990)
  77. U. Koster, J. Meinhardt, S. Roos, and H. Liebertz, Appl. Phys. Lett. 69, 179 (1996) https://doi.org/10.1063/1.117364
  78. J. K. Lee, G. Choi, W. T. Kim, and D. H. Kim, Appl. Phys. Lett. 77, 978 (2000) https://doi.org/10.1063/1.1289069
  79. A. Inoue, T. Zhang, J. Saida, and M. Matsushita, Mater. Trans. 41, 1511 (2000)
  80. T. K. Han, S. J. Kim, Y. S. Yang, A. Inoue, Y. H. Kim, and I. B. Kim, Met. Mater. -Int. 7, 91 (2001)
  81. A. Inoue, C. Fan, J. Saida, and T. Zhang, Sci. Tech. Advanced Materials 1, 73 (2000)
  82. L. Q. Xing, J. Eckert, and L. Schultz, NanoStructured materials, 12, 503 (1999) https://doi.org/10.1016/S0965-9773(99)00169-5
  83. Y. C. Kim, J. M. Park, J. K. Lee, W. T. Kim, and D. H. Kim, Mater. Trans. 44, 1978 (2003) https://doi.org/10.2320/matertrans.44.1978
  84. Y. C. Kim, J. H. Na, J. M. Park, D. H. Kim, and W. T. Kim, Appl. Phys. Lett. 83, 3093 (2003) https://doi.org/10.1063/1.1616198
  85. D. H. Bae, M. H. Lee, D. H. Kim, and D. J. Sordelet, Appl. Phys. Lett., 83, 2312 (2003) https://doi.org/10.1063/1.1611622
  86. A. Inoue, W. Zhang, and T. Zhang, Mater. Trans. 43, 1952 (2002) https://doi.org/10.2320/matertrans.43.1952
  87. W. Zhang and A. Inoue, Scripta mater. 48, 641 (2003)
  88. T. Zhang and A. Inoue, Mater. Trans. 43, 708 (2002) https://doi.org/10.2320/matertrans.43.708