Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

  • Received : 2005.04.12
  • Accepted : 2005.04.14
  • Published : 2005.04.30

Abstract

The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Abdu, U., Brodsky, M., and Schupbach, T. (2002) Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr. Biol. 12, 1645-1651 https://doi.org/10.1016/S0960-9822(02)01165-X
  2. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-2196 https://doi.org/10.1101/gad.914401
  3. Andreassen, P. R., Lacroix, F. B., Lohez, O. D., and Margolis, R. L. (2001) Neither p21WAF1 nor 14-3-3sigma prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res. 61, 7660-7668
  4. Bae, I., Smith, M. L., and Fornace, A. J. Jr. (1995) Induction of p53-, MDM2-, and WAF1/CIP1-like molecules in insect cells by DNA-damaging agents. Exp. Cell. Res. 217, 541-545 https://doi.org/10.1006/excr.1995.1120
  5. Baker, B. S. and Carpenter, A. T. (1972) Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics 71, 255-286
  6. Baker, B. S., Carpenter, A. T., and Ripoll, P. (1978) The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaaster. Genetics 90, 531-578
  7. Bartek, J. and Lukas, J. (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421-429 https://doi.org/10.1016/S1535-6108(03)00110-7
  8. Bartek, J., Lukas, C., and Lukas, J. (2004) Checking on DNA damage in S phase. Nat. Rev. Mol. Cell. Biol. 5, 792-804 https://doi.org/10.1038/nrm1493
  9. Bi, X., Wei, S. C., and Rong, Y. S. (2004) Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr. Biol. 14, 1348-1353 https://doi.org/10.1016/j.cub.2004.06.063
  10. Borel, F., Lohez, O. D., Lacroix, F. B., and Margolis, R. L. (2002) Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc. Natl. Acad. Sci. USA 99, 9819-9824
  11. Boyd, J. B., Golino, M. D., Nguyen, T. D., and Green, M. M. (1976) Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84, 485-506
  12. Brodsky, M. H., Sekelsky, J. J., Tsang, G., Hawley, R. S., and Rubin, G. M. (2000a) mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 14, 666-678
  13. Brodsky, M. H., Nordstrom, W., Tsang, G., Kwan, E., Rubin, G. M., et al. (2000b) Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103-113 https://doi.org/10.1016/S0092-8674(00)80627-3
  14. Brodsky, M. H., Weinert, B. T., Tsang, G., Rong, Y. S., McGinnis, N. M., et al. (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol. Cell. Biol. 24, 1219-1231 https://doi.org/10.1128/MCB.24.3.1219-1231.2004
  15. Brumbaugh, K. M., Otterness, D. M., Geisen, C., Oliveira, V., Brognard, J., et al. (2004) The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14, 585-598 https://doi.org/10.1016/j.molcel.2004.05.005
  16. Callen, E. and Surralles, J. (2004) Telomere dysfunction in genome instability syndromes. Mutat. Res. 567, 85-104 https://doi.org/10.1016/j.mrrev.2004.06.003
  17. Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., et al. (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-2837 https://doi.org/10.1038/sj.onc.1207528
  18. Cenci, G., Rawson, R. B., Belloni, G., Castrillon, D. H., Tudor, M., et al. (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev. 11, 863-875 https://doi.org/10.1101/gad.11.7.863
  19. Cenci, G., Siriaco, G., Raffa, G. D., Kellum, R., and Gatti, M. (2003) The Drosophila HOAP protein is required for telomere capping. Nat. Cell. Biol. 5, 82-84 https://doi.org/10.1038/ncb902
  20. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616-620 https://doi.org/10.1038/43292
  21. Chang, H. C. and Rubin, G. M. (1997) 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 11, 1132-1139 https://doi.org/10.1101/gad.11.9.1132
  22. Ciapponi, L., Cenci, G., Ducau, J., Flores, C., Johnson-Schlitz, D., et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr. Biol. 14, 1360-1366 https://doi.org/10.1016/j.cub.2004.07.019
  23. Davis, T., Meyers, M., Patten, C. W.-V., Sharda, N., Yang, C.-R., et al. (1998) Transcriptional responses to damage created by ionizing radiation. In DNA damage and repair, Nickologg, J. A. and Hoekstra, M. F. (eds.), pp. 223-262, Humana Press Inc., Totowa, New Jersey
  24. de Nooij, J. C., Letendre, M. A., and Hariharan, I. K. (1996) A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237-1247 https://doi.org/10.1016/S0092-8674(00)81819-X
  25. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A. Jr., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 https://doi.org/10.1038/356215a0
  26. Falck, J., Petrini, J. H., Williams, B. R., Lukas, J., and Bartek, J. (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290- 294 https://doi.org/10.1038/ng845
  27. Fanti, L., Giovinazzo, G., Berloco, M., and Pimpinelli, S. (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527-538 https://doi.org/10.1016/S1097-2765(00)80152-5
  28. Foe, V. E., Odell, G. M., and Edgar, B. A. (1993) The Development of Drosophila melanogaster, Cold Spring Harbor Laboratory Press, Cold Springer Harbor, NY
  29. Fogarty, P., Campbell, S. D., Abu-Shumays, R., Phalle, B. S., Yu, K. R., et al. (1997) The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418-426 https://doi.org/10.1016/S0960-9822(06)00189-8
  30. Galgoczy, D. J. and Toczyski, D. P. (2001) Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol. Cell. Biol. 21, 1710-1718 https://doi.org/10.1128/MCB.21.5.1710-1718.2001
  31. Gerald, J. N., Benjamin, J. M., and Kron, S. J. (2002) Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. J. Cell Sci. 115, 1749-1757
  32. Ghabrial, A., Ray, R. P., and Schupbach, T. (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev. 12, 2711-2723 https://doi.org/10.1101/gad.12.17.2711
  33. Gurley, L. R., D'Anna, J. A., Barham, S. S., Deaven, L. L., and Tobey, R. A. (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84, 1-15 https://doi.org/10.1111/j.1432-1033.1978.tb12135.x
  34. Hari, K. L., Santerre, A., Sekelsky, J. J., McKim, K. S., Boyd, J. B., et al. (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815-821 https://doi.org/10.1016/0092-8674(95)90478-6
  35. Haynie, J. L. and Bryant, P. J. (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilhelm Roux's Archives 183, 85-100 https://doi.org/10.1007/BF00848779
  36. Hirao, A., Cheung, A., Duncan, G., Girard, P. M., Elia, A. J., et al. (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)- dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521-6532 https://doi.org/10.1128/MCB.22.18.6521-6532.2002
  37. Jaklevic, B. R. and Su, T. T. (2004) Relative contribution of DNA repair, cell cycle checkpoints, and cell death to survival after DNA damage in Drosophila larvae. Curr. Biol. 14, 23- 32 https://doi.org/10.1016/j.cub.2003.12.032
  38. Jassim, O. W., Fink, J. L., and Cagan, R. L. (2003) Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J. 22, 5622-5632 https://doi.org/10.1093/emboj/cdg543
  39. Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316-323 https://doi.org/10.1038/nature03097
  40. Kockel, L., Vorbruggen, G., Jackle, H., Mlodzik, M., and Bohmann, D. (1997) Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev. 11, 1140-1147 https://doi.org/10.1101/gad.11.9.1140
  41. Krause, S. A., Loupart, M. L., Vass, S., Schoenfelder, S., Harrison, S., et al. (2001) Loss of cell cycle checkpoint control in Drosophila Rfc4 mutants. Mol. Cell. Biol. 21, 5156-5168 https://doi.org/10.1128/MCB.21.15.5156-5168.2001
  42. Lanni, J. S. and Jacks, T. (1998) Characterization of the p53- dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055-1064
  43. Lee, L. A. and Orr-Weaver, T. L. (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu. Rev. Genet. 37, 545-578 https://doi.org/10.1146/annurev.genet.37.110801.143149
  44. Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., et al. (2005) Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37, 305-310 https://doi.org/10.1038/ng1513
  45. Manke, I. A., Nguyen, A., Lim, D., Stewart, M. Q., Elia, A. E., et al. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17, 37-48 https://doi.org/10.1016/j.molcel.2004.11.021
  46. McEachern, M. J., Krauskopf, A., and Blackburn, E. H. (2000) Telomeres and their control. Annu. Rev. Genet. 34, 331-358 https://doi.org/10.1146/annurev.genet.34.1.331
  47. Mikhailov, A., Cole, R. W., and Rieder, C. L. (2002) DNA damage during mitosis in human cells delays the metaphase/ anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12, 1797-1806 https://doi.org/10.1016/S0960-9822(02)01226-5
  48. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A., and Edgar, B. A. (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183-1193 https://doi.org/10.1016/S0092-8674(00)81462-2
  49. Nilssen, E. A., Synnes, M., Tvegard, T., Vebo, H., Boye, E., et al. (2004) Germinating fission yeast spores delay in G1 in response to UV irradiation. BMC Cell Biol. 5, 40 https://doi.org/10.1186/1471-2121-5-1
  50. Nordstrom, W., Chen, P., Steller, H., and Abrams, J. M. (1996) Activation of the reaper gene during ectopic cell killing in Drosophila. Dev. Biol. 180, 213-226 https://doi.org/10.1006/dbio.1996.0296
  51. Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617-656 https://doi.org/10.1146/annurev.genet.36.060402.113540
  52. Oikemus, S. R., McGinnis, N., Queiroz-Machado, J., Tukachinsky, H., Takada, S., et al. (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev. 18, 1850-1861 https://doi.org/10.1101/gad.1202504
  53. Oishi, I., Sugiyama, S., Otani, H., Yamamura, H., Nishida, Y., et al. (1998) A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech. Dev. 71, 49-63 https://doi.org/10.1016/S0925-4773(97)00200-1
  54. Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., Belvin, M., et al. (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91-101 https://doi.org/10.1016/S0092-8674(00)80626-1
  55. Pagliarini, R. A. and Xu, T. (2003) A genetic screen in Drosophila for metastatic behavior. Science 302, 1227-1231 https://doi.org/10.1126/science.1088474
  56. Pagliarini, R. A., Quinones, A. T., and Xu, T. (2003) Analyzing the function of tumor suppressor genes using a Drosophila model. Methods Mol. Biol. 223, 349-382
  57. Pardue, M. L. and DeBaryshe, P. G. (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37, 485-511 https://doi.org/10.1146/annurev.genet.38.072902.093115
  58. Paulson, J. R. and Taylor, S. S. (1982) Phosphorylation of histones 1 and 3 and nonhistone high mobility group 14 by an endogenous kinase in HeLa metaphase chromosomes. J. Biol. Chem. 257, 6064-6072
  59. Pellicioli, A., Lee, S. E., Lucca, C., Foiani, M., and Haber, J. E. (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7, 293-300 https://doi.org/10.1016/S1097-2765(01)00177-0
  60. Peters, M., DeLuca, C., Hirao, A., Stambolic, V., Potter, J., et al. (2002) Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila. Proc. Natl. Acad. Sci. USA 99, 11305-11310
  61. Peterson, C., Carney, G. E., Taylor, B. J., and White, K. (2002) reaper is required for neuroblast apoptosis during Drosophila development. Development 129, 1467-1476
  62. Queiroz-Machado, J., Perdigao, J., Simoes-Carvalho, P., Herrmann, S., and Sunkel, C. E. (2001) tef: a mutation that causes telomere fusion and severe genome rearrangements in Drosophila melanogaster. Chromosoma 110, 10-23 https://doi.org/10.1007/s004120000116
  63. Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., et al. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568-1581 https://doi.org/10.1101/gad.986602
  64. Rouse, J. and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551 https://doi.org/10.1126/science.1074740
  65. Royou, A., Macias, H., and Sullivan, W. (2005) The Drosophila Grp/Chk1 DNA damage checkpoint controls entry into anaphase. Curr. Biol. 15, 334-339 https://doi.org/10.1016/j.cub.2005.02.026
  66. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39-85 https://doi.org/10.1146/annurev.biochem.73.011303.073723
  67. Santocanale, C. and Diffley, J. F. (1998) A Mec1- and Rad53- dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615-618 https://doi.org/10.1038/27001
  68. Schmidt-Kastner, P. K., Jardine, K., Cormier, M., and McBurney, M. W. (1998) Absence of p53-dependent cell cycle regulation in pluripotent mouse cell lines. Oncogene 16, 3003-3011 https://doi.org/10.1038/sj.onc.1201835
  69. Sekelsky, J. J., Brodsky, M. H., and Burtis, K. C. (2000) DNA repair in Drosophila: insights from the Drosophila genome sequence. J. Cell Biol. 150, F31-36 https://doi.org/10.1083/jcb.150.2.F31
  70. Sellins, K. S. and Cohen, J. J. (1987) Gene induction by gammairradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139, 3199-3206
  71. Shechter, D., Costanzo, V., and Gautier, J. (2004) ATR and ATM regulate the timing of DNA replication origin firing. Nat. Cell Biol. 6, 648-655 https://doi.org/10.1038/ncb1145
  72. Sibon, O. C., Stevenson, V. A., and Theurkauf, W. E. (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93-97 https://doi.org/10.1038/40439
  73. Sibon, O. C., Laurencon, A., Hawley, R., and Theurkauf, W. E. (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol. 9, 302-312 https://doi.org/10.1016/S0960-9822(99)80138-9
  74. Sibon, O. C., Kelkar, A., Lemstra, W., and Theurkauf, W. E. (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat. Cell. Biol. 2, 90-95 https://doi.org/10.1038/35000041
  75. Siede, W., Friedberg, A. S., and Friedberg, E. C. (1993) RAD9- dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 7985-7989
  76. Silva, E., Tiong, S., Pedersen, M., Homola, E., Royou, A., et al. (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr. Biol. 14, 1341-1347 https://doi.org/10.1016/j.cub.2004.06.056
  77. Skoufias, D. A., Lacroix, F. B., Andreassen, P. R., Wilson, L., and Margolis, R. L. (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol. Cell 15, 977-990 https://doi.org/10.1016/j.molcel.2004.08.018
  78. Skoulakis, E. M. and Davis, R. L. (1996) Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17, 931-944 https://doi.org/10.1016/S0896-6273(00)80224-X
  79. Skoulakis, E. M. and Davis, R. L. (1998) 14-3-3 proteins in neuronal development and function. Mol. Neurobiol. 16, 269-284 https://doi.org/10.1007/BF02741386
  80. Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A., et al. (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell. Biol. 2, 672-676 https://doi.org/10.1038/35023629
  81. Song, Y. H., Mirey, G., Betson, M., Haber, D. A., and Settleman, J. (2004) The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr. Biol. 14, 1354-1359 https://doi.org/10.1016/j.cub.2004.06.064
  82. Starz-Gaiano, M. and Montell, D. J. (2004) Genes that drive invasion and migration in Drosophila. Curr. Opin. Genet. Dev. 14, 86-91 https://doi.org/10.1016/j.gde.2003.12.001
  83. Su, T. T. and Jaklevic, B. (2001) DNA damage leads to a Cyclin A-dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Curr. Biol. 11, 8-17 https://doi.org/10.1016/S0960-9822(00)00042-7
  84. Su, T. T., Walker, J., and Stumpff, J. (2000) Activating the DNA damage checkpoint in a developmental context. Curr. Biol. 10, 119-126 https://doi.org/10.1016/S0960-9822(00)00300-6
  85. Su, T. T., Parry, D. H., Donahoe, B., Chien, C. T., O'Farrell, P. H., et al. (2001) Cell cycle roles for two 14-3-3 proteins during Drosophila development. J. Cell Sci. 114, 3445-3454
  86. Takada, S., Kelkar, A., and Theurkauf, W. E. (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113, 87-99 https://doi.org/10.1016/S0092-8674(03)00202-2
  87. Takai, H., Naka, K., Okada, Y., Watanabe, M., Harada, N., et al. (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195-5205 https://doi.org/10.1093/emboj/cdf506
  88. Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E., and Hariharan, I. K. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345-355 https://doi.org/10.1016/S0092-8674(01)00332-4
  89. Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., et al. (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478 https://doi.org/10.1016/S0092-8674(02)00824-3
  90. Thibault, S. T., Singer, M. A., Miyazaki, W. Y., Milash, B., Dompe, N. A., et al. (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283-287 https://doi.org/10.1038/ng1314
  91. White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., et al. (1994) Genetic control of programmed cell death in Drosophila. Science 264, 677-683 https://doi.org/10.1126/science.8171319
  92. White, K., Tahaoglu, E., and Steller, H. (1996) Cell killing by the Drosophila gene reaper. Science 271, 805-807 https://doi.org/10.1126/science.271.5250.805
  93. Wolff, T. and Ready, D. F. (1993) Pattern formation in the Drosophila retina; in The Development of Drosophila melanogaster, Bate, M. and Arias, A. M. (eds.), pp. 1277-1325, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  94. Xu, J. and Du, W. (2003) Drosophila chk2 plays an important role in a mitotic checkpoint in syncytial embryos. FEBS Lett. 545, 209-212 https://doi.org/10.1016/S0014-5793(03)00536-2
  95. Xu, T., Wang, W., Zhang, S., Stewart, R. A., and Yu, W. (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063
  96. Xu, J., Xin, S., and Du, W. (2001) Drosophila Chk2 is required for DNA damage-mediated cell cycle arrest and apoptosis. FEBS Lett. 508, 394-398 https://doi.org/10.1016/S0014-5793(01)03103-9
  97. Yoo, H. Y., Kumagai, A., Shevchenko, A., and Dunphy, W. G. (2004) Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117, 575-588 https://doi.org/10.1016/S0092-8674(04)00417-9
  98. Zhou, B. B. and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433- 439 https://doi.org/10.1038/35044005
  99. Zhou, L. and Steller, H. (2003) Distinct pathways mediate UVinduced apoptosis in Drosophila embryos. Dev. Cell 4, 599- 605 https://doi.org/10.1016/S1534-5807(03)00085-6