Numerical Analysis on Mixing Efficiency in a Micro-channel with Varied Geometry

미소 채널의 형상변화에 의한 혼합효율에 관한 수치 해석적 연구

  • Yoon, Joon-Yong (Department of Mechanical Engineering, Hanyang University) ;
  • Han, Gyu-suk (Department of Mechanical Engineering, Hanyang University) ;
  • Byun, Sung-Joon (Department of Mechanical Engineering, Hanyang University)
  • Received : 2004.12.06
  • Accepted : 2005.01.25
  • Published : 2005.04.10

Abstract

In this work, Scalar Passive code in Lattice Boltzmann Method was employed to simulate mixing performance of Passive mixer in a micro-channel. It physically analyzed stream line and Pressure drop for passive mixer in a micro-channel. The flow characteristics in a micro-channel was a function of Peclet number. The results indicated that the size of static element was more effect on the mixing than the number of static element and the distance of static elements.

본 연구에서는 격자 볼츠만 방법 중 Scalar Passive 코드를 사용하여 미소채널 내에서의 수동형 믹서의 혼합에 대하여 계산을 수행하였다. 미소채널 내에서의 수동형 믹서의 혼합에 대하여 유선과 압력분포를 통해 혼합과 압력 강하를 물리적으로 규명하였으며, 혼합에 영향을 주는 인자에 대해서 알아보았다. 수동형 믹서의 경우 고정물의 간격보다는 고정물의 개수와 고정물의 크기가 혼합효율과 압력강하에 큰 영향을 주었다.

Keywords

References

  1. J. Choe, Y. Kwon, Y. Kim, H.-S. Song, and K. H. Song, J. Korean Ind. Eng. Chem., 20, 2 (2003)
  2. Abraham D. Stroock, Stephaw K. W. Dertinger, Armand Ajdari, Igor Mezic, Howarol A. Stone, George M. Whitesides, Science, 295, 647 (2002) https://doi.org/10.1126/science.1066238
  3. M. C. Kim, S. Kim, S. S. Park, and H. D. Park, J. Korean Ind. Eng. Chem., 9, 5 (2002)
  4. R. H. Liu, A. S. Mark, V. S. Kendra, G. O. Michael, G. S. Juan, and J. A. Ronald, J. MEMS., 9, 2 (2000)
  5. L.-H. Lu, K. S. Ryu, and C. Liu, J. Micro Electro Mechanical Systems, 11, 5 (2002)
  6. H. Ukita and M. Kanehira, IEEE, 8, 1 (2002)
  7. S. H. Wong and P. Bryant, Michael Ward, Christopher Wharton, Sensors and Actuators B95, 414 (2003)
  8. T. J. Johnson, D. Ross, and L. E. Locascio, Anal. Chem., 74, 45 (2002) https://doi.org/10.1021/ac010895d
  9. H. Wang and P. Iovenitti, Erol Harvey and Syed Masood, 2002, Smart Mater. Struct, 11, 662 (2002) https://doi.org/10.1088/0964-1726/11/5/306
  10. Z. L. Yang, T, N. Dinh, R. R. Nourgaliev, and B. R. Sehgal, Heat Mass Transfer, 36, 295 (2000) https://doi.org/10.1007/s002310000089
  11. Mohamed Gad-el-Hak, Flow physics in MEMS, Mec. Ind, 2, 313 (2001)
  12. H.-K. Kang, M. Tsutahara, K.-D. Ro, Y.-H. Lee, KSME Int. J., 17, 12, 2034 (2003)
  13. Sauro Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press$\cdot$Oxford, 66 (2001)
  14. Xiaowen Shan, Physical Review E, 55, 2780 (1996)
  15. J. P. Holman, Heat Transfer, Mcgraw-Hill Companies, Ins., 8th Ed, 683 (2000)
  16. N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesided, Langmuir, 16, 8311 (2000) https://doi.org/10.1021/la000600b
  17. N.-T. Nguyen and S. T. Werelsy, Fundamentals and Applications of Microfluidics, Artech House, INC, 42 (2002)