Characteristics of $CF_x$ Radicals and Plasma Parameters in an Inductively Coupled $CF_4$ Plasma

Kim, Jung-Hyung;Chung, Kwang-Hwa;Yoo, Yong-Shim

  • Published : 20050800

Abstract

The behaviors of $CF_x$ radicals were studied in a $CF_4$ inductively coupled plasma. We investigated the change in the electron density by using the plasma frequency with the wave cutoff method and the behavior of $CF_2$ radical by using a laser-induced fluorescence method. We used the rate equations to calculate the dependences of the $CF_x$ radicals on the electron density. For an experimental verification of the dependence of the $CF_2$ radical on the electron density, the changes in the electron density and in the $CF_2$ radicals were measured as functions of the rf power. We found that the $CF_2$ radical density increased in the range of low electron densities, and then decreased beyond a critical electron density as the rf power was increased. The theoretical results were in good agreement with the experimental results. We also investigated the changes in $CF_2$ and the electron density in $CF_4$ plasmas for various process conditions, such as pressure, $CF_4$ flow rate, and $O_2$ gas addition. There were dramatic changes in the number of $CF_2$ radicals and the electron density as the parameters were changed.

Keywords

References

  1. N. R. Rueger, M. F. Doemling, M. Schaepkens, J. J. Beulens, T. E. F. M. Standaert and G. S. Oehrlein, J. Vac. Sci. Technol. A 17, 2492 (1999) https://doi.org/10.1116/1.581987
  2. T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, G. S. Oehrlein and J. M. Cook, J. Vac. Sci. Technol. A 16, 239 (1998) https://doi.org/10.1116/1.580978
  3. S. Hyashi, H. Nakagawa, M. Yamanaka and M. Kubota, Jpn. J. Appl. Phys. 36, 4845 (1997) https://doi.org/10.1143/JJAP.36.4845
  4. K. Miyata, M. Hori and T. Goto, J. Vac. Sci. Technol. A 14, 2343 (1996) https://doi.org/10.1116/1.580020
  5. C. Suzuki, K. Sasaki and K. Kadata, J. Appl. Phys. 82, 5321 (1997) https://doi.org/10.1063/1.366298
  6. K. Tachibana, H. Kamisagi and T. Kawasaki, Jpn. J. Appl. Phys. 28, 4367 (1999)
  7. T. Kimura and K. Ohe, J. Appl. Phys. 92, 1780 (2002) https://doi.org/10.1063/1.1491023
  8. L.-M. Buchmann, F. Heirich, P. Hoffmann and J. James, J. Appl. Phys. 67, 3635 (1990) https://doi.org/10.1063/1.345317
  9. S. Den, T. Kuno, M. Ito, M. Hori, T. Goto, Y. Hayashi and Y. Sakamoto, Jpn. J. Appl. Phys. 35, 6528 (1996) https://doi.org/10.1143/JJAP.35.6528
  10. D. Zhang and M. J. Kushner, J. Vac. Sci. Technol. A 18, 2661 (2000) https://doi.org/10.1116/1.1319816
  11. G. Cunge and J. P. Booth, J. Appl. Phys. 85, 3952 (1999) https://doi.org/10.1063/1.370296
  12. J. P. Booth, G. Cunge, P. Chabert and N. Sadeghi, J. Appl. Phys. 85, 3097 (1999) https://doi.org/10.1063/1.369649
  13. C. I. Butoi, N. M. Mackie, K. L. Willians, N. E. Capps and E. R. Fisher, J. Vac. Sci. Technol. A 18, 2685 (2000) https://doi.org/10.1116/1.1312371
  14. K. L. Steffens and M. A. Sobolewski, J. Vac. Sci. Technol. A 17, 517 (1999) https://doi.org/10.1116/1.581613
  15. S. Hayashi, K. Kawashima, N. Ozawa, H. Tsuboi, Y. Tatsumi and M. Sekine, Sci. Technol. Adv. Mat. 2, 555 (2001) https://doi.org/10.1016/S1468-6996(01)00137-1
  16. M. Haverlag, W. W. Stoffels, E. Stoffels, G. M. W. Kroesen and F. J. de Hoog, J. Vac. Sci. Technol. A 14, 384 (1994)
  17. D. C. Seo, T. H. Chung, H. J. Yoon and G. H. Kim, J. Appl. Phys. 89, 4218 (2001) https://doi.org/10.1063/1.1354633
  18. S. Panda, D. J. Economou and M. Meyyappan, J. Appl. Phys. 87, 8323 (2000) https://doi.org/10.1063/1.373544
  19. M. Klick, M. Kammeyer, W. Rehak, W. Kasper, P. Awakowicz and G. Franz, Surf. Coat. Technol. 98, 1395 (1998) https://doi.org/10.1016/S0257-8972(97)00261-2
  20. N. Mizutani and T. Hayashi, Thin Solid Films 374, 167 (2000) https://doi.org/10.1016/S0040-6090(00)01148-2
  21. T. Shirakawa and H. Sugai, Jpn. J. Appl. Phys. Part 1, 32, 5129 (1993)
  22. H. Kokura, K. Nakamura, I. P. Ghanashev and H. Sugai, Jpn. J. Appl. Phys. Part 1, 38, 5262 (1999)
  23. D. H. Looney and S. C. Brown, Phys. Rev. 93, 965 (1954) https://doi.org/10.1103/PhysRev.93.965
  24. T. Shirakawa and H. Sugai, Jpn. J. Appl. Phys. 32, 5129 (1993) https://doi.org/10.1143/JJAP.32.5129
  25. K. Nakamura, M. Ohata and H. Sugai, J. Vac. Sci. Technol. A 21, 325 (2003) https://doi.org/10.1116/1.1532740
  26. J. H. Kim, D. J. Seong, J. Y. Lim and K. H. Chung, Appl. Phys. Lett. 83, 4725 (2003) https://doi.org/10.1063/1.1632026
  27. J. H. Kim, S. C. Choi, Y. H. Shin and K. H. Chung, Rev. Sci. Inst. 75, 2706 (2004) https://doi.org/10.1063/1.1771487
  28. S. Y. So, A. Oda, H. Sugawara and Y. Sakai, J. Phys. D: Appl. Phys. 34, 1919 (2001) https://doi.org/10.1088/0022-3727/34/12/324
  29. H. Singh, J. W. Coburn and D. B. Graves, J. Vac. Sci. Technol. A 18, 2680 (2000) https://doi.org/10.1116/1.1308585
  30. S. Den, T. Kuno, M. Ito, M. Hori, T. Goto, Y. Hayashi and Y. Sakamoto, Jpn. J. Appl. Phys. 35, 6528 (1996) https://doi.org/10.1143/JJAP.35.6528
  31. J. H. Kim, Y. H. Shin, K. H. Chung and Y. S. Yoo, Appl. Phys. Lett. 85, 1922 (2004) https://doi.org/10.1063/1.1788880
  32. K. J. Taylor and G. R. Tynan, J. Vac. Sci. Technol. A 23, 634 (2005) https://doi.org/10.1116/1.1931680
  33. F. Gaboriau, M. C. Peignon, G. Cartry, L. Rolland, D. Eon, C. Cardinaud and G. Turban, J. Vac. Sci. Technol. A 20, 919 (2002) https://doi.org/10.1116/1.1474419
  34. M. V. Malyshev, V. M. Donnelly, S. W. Downey, J. I. Colonell and N. Layadi, J. Vac. Sci. Technol. A 18, 849 (2000) https://doi.org/10.1116/1.582266
  35. J. P. Booth, G. Hancock and N. D. Perry, Appl. Phys. Lett. 50, 318 (1987) https://doi.org/10.1063/1.98214