DOI QR코드

DOI QR Code

Sarsaponin Effects on Ruminal Fermentation and Microbes, Methane Production, Digestibility and Blood Metabolites in Steers

  • Lila, Zeenat Ara (Faculty of Agriculture, Tokyo University of Agriculture and Technology) ;
  • Mohammed, Nazimuddin (Faculty of Agriculture, Tokyo University of Agriculture and Technology) ;
  • Kanda, Shuhei (Faculty of Agriculture, Tokyo University of Agriculture and Technology) ;
  • Kurihara, Mitsunori (National Institute of Livestock and Grassland Science) ;
  • Itabashi, Hisao (Faculty of Agriculture, Tokyo University of Agriculture and Technology)
  • Received : 2004.11.25
  • Accepted : 2005.07.14
  • Published : 2005.12.01

Abstract

The objective of this study was to evaluate the effects of sarsaponin on methane production, ruminal fermentation, nutrient digestion and blood metabolites using three Holstein steers in a 3${\times}$3 Latin Square design. The steers were fed Sudangrass hay plus concentrate mixture at a ratio 1.5:1 twice daily, and sarsaponin (0, 0.5 and 1% of DM), which was given at 09:00 and 17:00 h daily by mixing with concentrate. Rumen samples were collected 0, 2, and 5 h after morning dosing. Ruminal pH was numerically decreased and numbers of protozoa were decreased linearly (p<0.01) by treatment. Ruminal ammonia-N was reduced (linear; p<0.05) and total VFA was increased (quadratic; p<0.05) at 2 and 5 h after sarsaponin dosing. The molar proportion of acetate was decreased (quadratic; p<0.05) and propionate was increased (linear; p<0.01) at all sampling times. Blood plasma glucose was increased and urea-N was decreased (linear; p<0.05) at 2 and 5 h after dosing. Methane was decreased by approximately 12.7% (linear; p<0.05). The apparent digestibility of DM and NDF were decreased (quadratic; p<0.05) and that of CP remained unchanged due to the sarsaponin. The numbers of cellulolytic bacteria were decreased (quadratic; p<0.05), while numbers of total viable bacteria remained unchanged due to the sarsaponin. These results show that sarsaponin can partially inhibit rumen methanogenesis in vivo and improve ruminal fermentation, which supports our previous in vitro results.

Keywords

References

  1. Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787.
  2. Bayaru, E., S. Kanda, T. Kamada, H. Itabashi, S. Andoh, T. Nishida, M. Ishida, T. Itoh, K. Nagara and Y. Isobe. 2001. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Anim. Sci. J. 72:139-146.
  3. Chalupa, W. 1984. Manipulation of rumen fermentation. In: Recent Advances in Animal Nutrition (Ed. W. Haresign and D. J. A. Cole). Butterworths, London, pp. 143-160.
  4. Chen, M. and M. J. Wolin. 1979. Effect of monensin and lasalocid on the growth of methanogenic and rumen saccharolytic bacteria. Appl. Environ. Microbiol. 38:72-77.
  5. Choi, N. J., S. Y. Lee, H. G. Sung, S. C. Lee and J. K. Ha. 2004. Effects of halogenated compounds, organic acids and unsaturated fatty acids on in vitro methane production and fermentation characteristics. Asian-Aust. J. Anim. Sci. 17:1255-1259.
  6. Christopher, D. L. U. and A. J. Neal. 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutr. 117:919-927.
  7. Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157-161.
  8. Goetsch, A. L. and F. N. Owens. 1985. Effects of sarsaponin on digestion and passage rates in cattle fed medium to low concentrate. J. Dairy Sci. 68:2377-2384.
  9. Goodall, S. R., J. D. Eichenbaum and J. K. Matsushima. 1979. Sarsaponin and monensin effects upon in vitro VFA concentration, gas production and feedlot performance. J. Anim. Sci. 49:370-376.
  10. Grobner, M. A., D. E. Johnson, S. R. Goodall and D. A. Benz. 1982. Sarsaponin effects on in vitro continuous flow fermentation of a high grain diet. J. Anim. Sci. 55:491-497.
  11. Halliwell, M. E. and M. P. Bryant. 1953. The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J. Gen. Microbiol. 32:441-448.
  12. Headon, D. R., K. Buggle, A. Nelson and G. Killeen. 1991. Glycofractions of the yucca plant and their role in ammonia control. In: Biotechnology in the Feed Industry (Ed. T. P. Lyons). Alltech, Inc., Nicholasville, KY, pp. 95-108.
  13. Helaszek, C. T. and B. A. White. 1991. Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl. Environ. Microbiol. 57:64-68.
  14. Hristov, A. N., T. A. McAllister, F. H. Van Herk, K. -J. Cheng, C. J. Newbold and P. R. Cheeke. 1999. Effect of Yucca schidigera on ruminal fermentation and nutrient digestion in heifers. J. Anim. Sci. 77:2554-2563.
  15. Hungate, R. E. 1969. A roll-tube method for cultivation of strict anaerobes. Methods in Microbiol. 3B:117-132.
  16. Hussain, I. and P. R. Cheeke. 1995. Effect of dietary Yucca schidigera extract on rumen and blood profiles of steers fed concentrate or roughage-based diets. Anim. Feed Sci. Technol. 51:231-242.
  17. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
  18. Leedle, J. A. Z. and R. C. Hespell. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacteria populations. Appl. Environ. Microbiol. 34:709-719.
  19. Lee, H. J., S. C. Lee, J. D. Kim, Y. C. Oh, B. K. Kim, C. W. Kim, and K. J. Kim. 2003. Methane production potential of feed ingredients as measured by in vitro gas test. Asian-Aust. J. Anim. Sci. 16:1143-1150.
  20. Lila, Z. A., N. Mohammed, S. Kanda, T. Kamada and H. Itabashi. 2003. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. J. Dairy Sci. 86:3330-3336.
  21. Lila, Z. A., N. Mohammed, N. Ajisaka, S. Kanda, Y. Kurokawa, and H. Itabashi. 2004a. Effect of cyclodextrin diallyl maleate complex on methane production, ruminal fermentation and microbes, in vitro and in vivo. Anim. Sci. J. 75(1):15-22.
  22. Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda and H. Itabashi. 2004b. Effects of twin-strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854.
  23. Martin, S. A. and M. N. Streeter. 1995. Effect of malate on in vitro mixed ruminal microorganism fermentation. J. Anim. Sci. 73:2141-2145.
  24. Mathison, G. W., E. K. Okine, T. A. McAllister, Y. Dong, J. Galbraith and O. I. N. Dmytruk. 1998. Reducing methane emissions from ruminant animals. J. Appl. Anim. Res. 14:1-28.
  25. McCrabb, G. J., K. T. Berger, T. Magner, C. May and R. A. Hunter. 1997. Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects on growth. Aust. J. Agric. Res. 48:323-329.
  26. McGinn, S. M., K. A. Beauchemin, T. Coates and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast and fumaric acid. J. Anim. Sci. 82:3346-3356.
  27. Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846.
  28. Moss, A. R. 1993. Methane: Global Warming and Production by Animals. Chalcombe Publications, Kingston, UK.
  29. Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 21:230-234.
  30. Sar, C., B. Santoso, Y. Gamo, T. Kobayashi, S. Shiozaki, K. Kimura, H. Mizukoshi, I. Arai and J. Takahashi. 2004. Effects of combination of nitrate with 1-4 galacto-oligosaccharides and yeast (Candida Kefyr) on methane emission from sheep. Asian-Aust. J. Anim. Sci. 17:73-79.
  31. SAS/STAT$^{\circledR}$ 1994. User’s Guide: statistics, Version 6. 4th edn, SAS Institute. Inc., North Carolina.
  32. Shibata, M., F. Terada, K. Iwasaki, M. Kurihara and T. Nishida. 1992. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim. Sci. and Technol. 63:1221-1227.
  33. Stumm, C. K., H. J. Gijzen and G. D. Vogels. 1982. Association of methanogenic bacteria with ovine rumen ciliates. Br. J. Nutr. 47:95-99.
  34. Stumm, C. K. and K. B. Zwart. 1986. Symbiosis of protozoa with hydrogen utilizing methanogens. Microbiol. Sci. 3:100-105.
  35. Takahashi, J., T. Miyagawa, Y. Kojima and K. Umetsu. 2000. Effects of Yucca schidigera extract, probiotics, monensin and L-cysteine on rumen methanogenesis. Asian-Aust. J. Anim. Sci. 13(Suppl.):499-501.
  36. Ushida, K., M. Tokura, A. Takenaka and H. Itabashi. 1997. Ciliate protozoa and ruminal methanogenesis. In: Rumen Microbes and Digestive Physiology in Ruminants (Ed. R. Onodera, H. Itabashi, K. Ushida, H. Yano and Y. Sasaki). Japan Scientific Society Press, Tokyo/S. Karger, Basel, pp. 209-220.
  37. Valdez, F. R., L. J. Bush, A. L. Goetsch and F. N. Owens. 1986. Effect of steroidal sapogenins on ruminal fermentation and on production of lactating dairy cows. J. Dairy. Sci. 69:1568-1575.
  38. Wallace, R. J., L. Arthaud and C. J. Newbold. 1994. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 60:1762-1767.
  39. Wang, Y., T. A. McAllister, L. J. Yanke and P. R. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896.
  40. Wu, Z., M. Sadik, F. T. Sleiman, J. M. Simas, M. Pessarakli and J. T. Huber. 1994. Influence of Yucca extract on ruminal metabolism in cows. J. Anim. Sci. 72:1038-1042.

Cited by

  1. Effects of Yucca schidigera on gas mitigation in livestock production: A review vol.60, pp.0, 2017, https://doi.org/10.1590/1678-4324-2017160359
  2. Nitrate but not tea saponin feed additives decreased enteric methane emissions in nonlactating cows1 vol.93, pp.11, 2015, https://doi.org/10.2527/jas.2015-9367
  3. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions vol.97, pp.6, 2014, https://doi.org/10.3168/jds.2013-7234
  4. Effects of Daily and Interval Feeding of Sapindus rarak Saponins on Protozoa, Rumen Fermentation Parameters and Digestibility in Sheep vol.19, pp.11, 2005, https://doi.org/10.5713/ajas.2006.1580
  5. Phylogenetic Analysis of 16S rDNA Sequences Manifest Rumen Bacterial Diversity in Gayals (Bos frontalis) Fed Fresh Bamboo Leaves and Twigs (Sinarumdinaria) vol.20, pp.7, 2005, https://doi.org/10.5713/ajas.2007.1057
  6. In vitro Methanogenesis and Fermentation of Feeds Containing Oil Seed Cakes with Rumen Liquor of Buffalo vol.20, pp.8, 2005, https://doi.org/10.5713/ajas.2007.1196
  7. In vitro Methanogenesis, Microbial Profile and Fermentation of Green Forages with Buffalo Rumen Liquor as Influenced by 2-Bromoethanesulphonic Acid vol.21, pp.6, 2008, https://doi.org/10.5713/ajas.2008.70336
  8. Influence of different dietary forages on the fatty acid composition of rumen digesta as well as ruminant meat and milk vol.145, pp.1, 2008, https://doi.org/10.1016/j.anifeedsci.2007.05.043
  9. Strategies to reduce methane emissions from farmed ruminants grazing on pasture vol.188, pp.1, 2005, https://doi.org/10.1016/j.tvjl.2010.02.019
  10. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome vol.24, pp.9, 2005, https://doi.org/10.1101/gr.168245.113
  11. Effects of Licorice Extract Supplementation on Feed Intake, Digestion, Rumen Function, Blood Indices and Live Weight Gain of Karakul Sheep vol.9, pp.5, 2005, https://doi.org/10.3390/ani9050279
  12. Effects of saponin on enteric methane emission and nutrient digestibility of ruminants: An in vivo meta-analysis vol.788, pp.1, 2021, https://doi.org/10.1088/1755-1315/788/1/012028
  13. Discrepancies in the German Pharmacopoeia procedure for quality control of Quillaja saponin extracts vol.354, pp.12, 2005, https://doi.org/10.1002/ardp.202100262