R&D Trends and Unit Processes of Hydrogen Station

수소 스테이션의 연구개발 동향 및 단위공정 기술

  • Moon, Dong Ju (Reaction Media Research Center, Korea Institute of Science & Technology) ;
  • Lee, Byoung Gwon (Reaction Media Research Center, Korea Institute of Science & Technology)
  • 문동주 (한국과학기술연구원 반응매체연구센터) ;
  • 이병권 (한국과학기술연구원 반응매체연구센터)
  • Received : 2005.05.24
  • Accepted : 2005.06.27
  • Published : 2005.06.30

Abstract

Development of hydrogen station system is an important technology to commercialize fuel cells and fuel cell powered vehicles. Generally, hydrogen station consists of hydrogen production process including desulfurizer, reformer, water gas shift (WGS) reactor and pressure swing adsorption (PSA) apparatus, and post-treatment process including compressor, storage and distributer. In this review, we investigate the R&D trends and prospects of hydrogen station in domestic and foreign countries for opening the hydrogen economy society. Indeed, the reforming of fossil fuels for hydrogen production will be essential technology until the ultimate process that may be water hydrolysis using renewable energy source such as solar energy, wind force etc, will be commercialized in the future. Hence, we also review the research trends on unit technologies such as the desulfurization, reforming reaction of fossil fuels, water gas shift reaction and hydrogen separation for hydrogen station applications.

연료전지와 수소를 사용하는 연료전지 자동차의 상용화를 위해서는 수소 공급용 수소 스테이션(hydrogen station)의 개발이 중요한 핵심 기반기술이다. 일반적으로 수소 스테이션은 탈황반응, 개질반응(reforming), 수성가스전환(WGS) 반응 및 수소분리(PSA) 장치로 구성된 수소제조 공정과 압축, 저장 및 분배 장치로 구성된 후처리(post-treatment) 공정으로 구성되어 있다. 본 총설에서는 수소 경제(hydrogen economy) 사회로의 진입을 위해 국내외에서 연구개발 중인 수소 스테이션에 대한 연구 개발 동향과 전망을 고찰하였다. 그리고 향후 풍력 및 태양열 등 재생 가능 에너지(renewable energy)원으로부터 물의 분해에 의한 수소제조 기술이 확립되기 전까지는 화석연료의 개질 반응이 수소를 제조하는 핵심기술이 될 것으로 판단된다. 따라서 화석연료의 탈황반응, 화석연료의 개질 반응에 의한 수소제조, CO 농도 저감을 위한 수성가스 전환반응 및 수소의 분리기술 등 수소 스테이션의 상용화에 필수적인 단위공정개발에 대한 최근의 연구동향을 정리하였다.

Keywords

Acknowledgement

Supported by : 수소연료전지사업단, SK(주), 한국과학기술연구원

References

  1. Pena, M. A., Gomez, J. P. and Fierro, J. L. G., 'New Catalytic Routes for Syngas and Hydrogen Production,' Appl. Catal. A: Gen, 144, 7-57(1996) https://doi.org/10.1016/0926-860X(96)00108-1
  2. Nicoletti, G., 'The Hydrogen Option for Energy: A Review of Technical, Environmental and Economic Aspects,' Int. J. Hydrogen Energ., 20, 759-765(1995) https://doi.org/10.1016/0360-3199(94)00118-J
  3. Bockris, J. O. M., 'Hydrogen Economy in the Future,' Int. J. Hydrogen Energ., 24, 1-15(1999) https://doi.org/10.1016/S0360-3199(98)00115-3
  4. Armor, J. N., 'The Multiple Roles for Catalysis in the Production of $H_2$,' Appl. Catal. A: Gen., 176, 159-176(1999) https://doi.org/10.1016/S0926-860X(98)00244-0
  5. Bharadwaj, S. S. and Schmidt, L. D., 'Catalytic Partial Oxidation of Natural Gas to Syngas,' Fuel Process. Technol., 42, 109-127 (1995) https://doi.org/10.1016/0378-3820(94)00098-E
  6. http://www.eere.energy.gov
  7. 2003 Annual Progress Report, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program,' U.S. DOE(2003)
  8. http://www.enaa.or.jp/we-net
  9. http://www.eren.doe.gov/hydrogen
  10. http://www.clean-air.org
  11. http://www.gov.mb.ca
  12. http://www.hydrogenus.com
  13. http://www.hydrogen.org
  14. http://www.nrel.gov
  15. http://www.fuel-cell-bus-club.com
  16. http://hfcletter.com
  17. Melaina, M. W., 'Initiating Hydrogen Infrastuctures: Preliminary Analysis of a Sufficient Number of Initial Hydrogen Stations in the US,' Int. J. Hydrogen Energ., 28, 743-755(2003) https://doi.org/10.1016/S0360-3199(02)00240-9
  18. Pehr, H., Sauermann, P., Traeger, O. and Bracha, M., 'Liquid Hydrogen for Motor Vehicles-the World’s First Public $LH_2$ Filling Station,' Int. J. Hydrogen Energ., 26, 777-782(2001) https://doi.org/10.1016/S0360-3199(00)00128-2
  19. Ogden, J. M., Steinbugler, M. M. and Kreutz, T. G., 'A Comparison of Hydrogen, Methanol and Gasoline as Fuels for Fuel Cell Vehicles: Implications for Vehicle Design and Infrastructure Development,' J. Power Sources, 79, 143-168(1999) https://doi.org/10.1016/S0378-7753(99)00057-9
  20. http://www.h2fc.or.kr
  21. Kreuter, W. and Hofmann, H., 'Electrolysis: the Important Energy Transformer in a World of Sustainable Energy,' Int. J. Hydrogen Energ., 23(8), 661-666(1998) https://doi.org/10.1016/S0360-3199(97)00109-2
  22. Schug, C. A., 'Operational Characteristics of High-Pressure, Highefficiency Water-Hydrogen-Electrolysis,' Int. J. Hydrogen Energ., 23(12), 1113-1120 (1998) https://doi.org/10.1016/S0360-3199(97)00139-0
  23. Shangguan, W. F., 'Progress in Research of Hydrogen Production from Water on Photocatalysts with Solar Energy,' Chin. J. Inorg. Chem., 17(5), 619-626(2001)
  24. Kida, T., Guan, G. Q., Yamada, N., Ma, T. L., Kimura, K. and Yoshida, A., 'Hydrogen Production from Sewage Sludge Solubilized in Hot-Compressed Water using Photocatalyst under Light Irradiation,' Int. J. Hydrogen Energ., 29(3), 269-274(2004) https://doi.org/10.1016/j.ijhydene.2003.08.007
  25. Ashokkumar, M., 'An Overview on Semiconductor Particulate Systems for Photoproduction of Hydrogen,' Int. J. Hydrogen Energ., 23(6), 427-438(1998) https://doi.org/10.1016/S0360-3199(97)00103-1
  26. Saxena, S. K., 'Hydrogen Production by Chemically Reacting Species,' Int. J. Hydrogen Energ., 28(1), 49-53(2003) https://doi.org/10.1016/S0360-3199(02)00036-8
  27. Song, C. S., 'Fuel Processing for Low-Temperature and High-Temperature Fuel Cells - Challenges, and Opportunities for Sustainable Development in the 21st Century,' Catal. Today, 77(1-2), 17-49(2002) https://doi.org/10.1016/S0920-5861(02)00229-8
  28. Rosen, M. A. and Scott, D. S., 'Comparative Efficiency Assessments for a Range of Hydrogen Production Processes,' Int. J. Hydrogen Energ., 23(8), 653-659(1998) https://doi.org/10.1016/S0360-3199(97)00080-3
  29. Hao, S. R., 'Hydrocarbon Steam-Reforming Process: Feedstock and Catalysts for Hydrogen Production in China,' Int. J. Hydrogen Energ., 23(5), 315-319(1998) https://doi.org/10.1016/S0360-3199(97)00073-6
  30. Rosen, M. A., 'Thermodynamic Comparison of Hydrogen Production Processes,' Int. J. Hydrogen Energ., 21(5), 349-365(1996) https://doi.org/10.1016/0360-3199(95)00090-9
  31. Bilgen, E., 'Domestic Hydrogen Production using Renewable Energy,' Sol. Energy, 77(1), 47-55(2004) https://doi.org/10.1016/j.solener.2004.03.012
  32. Onda, K., Kyakuno, T., Hattori, K. and Ito, K., 'Prediction of Production Power for High-Pressure Hydrogen by High-Pressure Water Electrolysis,' J. Power Sources, 132(1-2), 64-70(2004) https://doi.org/10.1016/j.jpowsour.2003.12.062
  33. Junker, M., Bocquet, L., Bendif, M. and Karboviac, D., 'Hydrogen for Road Transportation: Achievements and Developments,' Ann. Chim-Sci. Mat., 26(4), 117-130(2001)
  34. Fahmy, F. H., 'Hydrogen Gas Production and Utilization as Electricity using a Renewable Energy Source,' Energ. Source, 21(7), 629-641(1999) https://doi.org/10.1080/00908319950014579
  35. Trasatti, S., 'Electrochemistry and Environment-The Role of Electrocatalysis,' Int. J. Hydrogen Energ., 20(10), 835-844(1995) https://doi.org/10.1016/0360-3199(95)00014-5
  36. http://www.fuelcells.org
  37. http://www.doe.gov
  38. Ogden, J. M., 'Developing an Infrastructure for Hydrogen Vehicles: a Southern California Case Study,' Int. J. Hydrogen Energ., 24, 709-730(1999) https://doi.org/10.1016/S0360-3199(98)00131-1
  39. http://www.nrcan.gc.ca
  40. Talyor, B., 'From Test Stations to Commercialization Within a Decade at Hydrogenics,' Fuel Cell Bulletin, 2004(4), 10-14(2004)
  41. Bunger, U. and Tartaglia, G. P., 'Hydrogen Activities in the European Union Work Programme,' 21st World Gas Conference, Nizza, 6-9 June(2000)
  42. Wurster, R., Altmann, M., Sillat, D., Linde, A. G., Schaller, K. V., Gruber, C. H., Kalk, K. W., Hammerschmidt, A., Bette, W., Holl, E. and Fetzer J., 'Bavarian PEM Fuel Cell Bus Project,' Proceeding of 13th World Hydrogen Energy Conference, 1-7(2000)
  43. Hijikata, T., 'Research and Development of International Clean Energy Network using Hydrogen Energy (WE-NET),' Int. J. Hydrogen Energ., 27, 115-129(2002) https://doi.org/10.1016/S0360-3199(01)00089-1
  44. http://www.jhfc.org
  45. Yoon, W. L., Park, J. W., Rhee, Y. W., Han, M. W., Jeong, J. H., Park, J. S., Jung, H., Lee, H. T. and Kim, C. S., 'Operating Characteristics of Integrated NG Reformer System for 5 kW Class PEM Fuel Cell,' HWAHAK KONGHAK, 41(3), 389-396(2003)
  46. http://www.kier.re.kr
  47. Oh, Y. S. and Jung, H., 'R&D Status of Reformer and Development of Small Scale Hydrogen Generator,' Prospective of Industrial Chemistry, 6(3), 11-29(2003)
  48. http://www.kogas.or.kr
  49. http://rnd.lgchem.co.kr
  50. http://www.ceti-fuelcell.com
  51. http://www.sait.samsung.co.kr
  52. KIST, 'Development of Multi-Fuel Processor for Fuel Cell Vehicle,' KIST Report, UCE1702(2)-7118-6(2001)
  53. KIST, 'Development of Multi-Fuel Processor for Fuel Cell Vehicle,' KIST Report, UCE1746(2)-7370-1(2002)
  54. Kang, D. M., Moon, D. J., Ryu, J. W., Lee, B. G., Lee, S. D. and Hong, S. I., 'Fine Grinding Characterization of Alumina Ground by a Stirred ball Attrition Mill,' Korean Chem. Eng. Res., 42(5), 518-523(2004)
  55. Moon, D. J., Ryu, J. W., Kang, D. M., Lee, B. G., Ahn, B. S. and Lee, S. D., 'POX Reforming Structured Catalyst of Gasoline for Fuel Cell Powered Vehicles Applications and A Method for Preparing the Structured Catalyst,' Application to Korea Patent No. 03-0074937(2003), U.S. Patent No. 10/830,238(2004)
  56. Moon, D. J., Ryu, J. W., Lee, S. D., Lee B. G. and Ahn, B. S., 'Ni-Based Catalyst for Partial Oxidation Reforming of Iso-Octane,' Appl. Catal. A: Gen, 272, 53-60(2004) https://doi.org/10.1016/j.apcata.2004.05.009
  57. Moon, D. J., Ryu, J. W., Lee, S. D., Lee B. G. and Ahn, B. S., 'Transition Metal Catalysts for the POX Reforming of Gasoline for Fuel Cell Powered Vehicles Applications,' Korea Patent No. 0448683(2004)
  58. Moon, D. J. and Ryu, J. W., 'Partial Oxidation Reforming Catalyst for Fuel Cell Powered Vehicles Application,' Catal. Lett., 89(3-4), 207-212(2003) https://doi.org/10.1023/A:1025702429061
  59. Moon, D. J., Ryu, J. W., Kim, D. H., Lee, S. D. and Lee, B. G., 'High Performance Water Gas Shift Catalysts and A Method of Preparing The Same,' Korean Patent 10-0028765 (2004), and U.S. Patent No.10,852,452(2004)
  60. Ryu, J. W., Moon, D. J. and Hong, S. I., '$Pt-Ni/CeO_2$ Water Gas Shift Catalyst for Fuel Processor and Hydrogen Station Applications,' submitted, Catal. Lett.(2005)
  61. Ryu, J. W., Moon, D. J., Kang, D. M., Kim, H. S., Lee, S. D. and Ahn, B. S., '$Pt-Ni/CeO_2$ WGS Catalyst for Fuel Cell Powered Vehicles Applicatins,' 13th ICC, 123-124(2004)
  62. Moon, D. J., Ryu, J. W., Lee, S. D. and Hong, S. I., 'Development of High Performance WGS Catalyst for Hydrogen Staion and Fuel Processor,' The 4th Asia-Pacific Chemical Reaction Engineering Symposium(APCRE), Gyeongju, 199-200(2005)
  63. Ryu, J. W., Moon, D. J., Heo, M. H., Lee, B. G. and Hong, S. I., 'Development of Water Gas Shift Catalyst for Fuel Processor and Hydrogen Station,' 10th Korea & Japan Symposium on Catalysis, Matsue, Japan, 229-230(2005)
  64. Thompson, L., Patt, J., Moon, D. J. and Phillips, C., 'Transition Metal Carbides, Nitrides and Borides and Their Oxygen Containing Analogs Useful as Water Gas Shift Catalysts,' U.S. Patent No. 6,623,720 B2(2003)
  65. Moon, D. J. and Ryu, J. W., 'Molybdenum Carbide Water–Gas Shift Catalyst for Fuel Cell-Powered Vehicles Applications,' Catal. Lett., 92, 17(2004) https://doi.org/10.1023/B:CATL.0000011079.20686.db
  66. Ryu, J. W., Moon, D. J., Lee, S. D., Lee, B. G., Ahn, B. S. and Hong, S. I., 'Development of Water Gas Shift Catalyst for Fuel Cell and Vehicles Applications,' 9th Korea & Japan Symposium on Catalysis, Pohang, Korea, 161-162(2003)
  67. Kwak, C., Park, T. J. and Suh, D. J., 'Effects of Sodium Addition on the Performance of $PtCo/Al_{2}O_{3}$ Catalysts for Preferential Oxidation of Carbon Monoxide from Hydrogen-Rich Fuels,' Appl. Catal. A:Gen., 278(2), 181-186(2005) https://doi.org/10.1016/j.apcata.2004.05.025
  68. Kwak, C., Park, T. J. and Suh, D. J., 'Preferential Oxidation of Carbon Monoxide in Hydrogen-Rich Gas over Platinum-Cobaltalumina Aerogel Catalysts,' Chem. Eng. Sci., 60(5), 1211-1217(2005) https://doi.org/10.1016/j.ces.2004.07.126
  69. http://www.h2.re.kr
  70. Moon, D. J., Ryu, J. W., Kim, D. H., Yoo, K. S., Lee, S. D., Ahn, B. S., Kim, H. G. and Lee, B. G., 'R&D Trends and Catalyst Technologies of Hydrogen Station,' Theo. & Appl. Chem. Eng., 10(2), 2350-2353(2004)
  71. Song, C., 'Keynote: Catalysis and Chemistry for Deep Desulfurization of Gasoline and Diesel Fuels,' Proceeding of the 5th International Conference on Refinery Processing, New Orleans, 3-12(2002)
  72. Song, C., 'Catalytic Fuel Processing for Fuel Cell Applications. Challenges and Opportunities,' Am. Chem. Soc. Div. Fuel Chem. Prep., 46(1), 8-13(2001)
  73. Gates B. C. and Topsoe, H., 'Reactivities in Deep Catalytic Hydrodesulfurization: Challenges, Opportunities, and the Importance of 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene,' Polyhedron, 16(18), 3213-3217(1997) https://doi.org/10.1016/S0277-5387(97)00074-0
  74. Topsoe, H., Knudsen, K. G., Byskov, L. S., Norskov, J. K. and Clausen, B. S., 'Advances in Deep Desulfurization,' Stud. Surf. Sci. Catal., 121, 13-22(1999) https://doi.org/10.1016/S0167-2991(99)80040-8
  75. Whitehurst, D. D., Isoda, T. and Mochida, I., 'Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds,' Adv. Catal., 42, 345-471(1998) https://doi.org/10.1016/S0360-0564(08)60631-8
  76. Song, C. and Reddy, K. M., 'Mesoporous Molecular Sieve MCM-41 Supported Co-Mo Catalyst for Hydrodesulfurization of Dibenzothiophene in Distillate Fuels,' Appl. Catal. A: Gen., 176(1), 1-10(1999) https://doi.org/10.1016/S0926-860X(98)00230-0
  77. Turaga, U. and Song C., 'Novel Mesoporous Co-Mo/MCM-41 Catalyst for Deep Hydrodesulfuization of Jet Fuel,' Proceeding of the North American Catalysis Society Meeting, Canada(2001)
  78. Nagase, S., Takami, S., Hirayama, A. and Hirai, Y., 'Development of a High Efficiency Substitute Natural Gas Production Process,' Catal. Today, 45(1-4), 393-397(1998) https://doi.org/10.1016/S0920-5861(98)00228-4
  79. Sipma, J., Janssen, A. J. H., Pol, L. W. H. and Lettingal, G., 'Development of a Novel Process for the Biological Conversion of $H_{2}S$ and Methanethiol to Elemental Sulfur,' Biotechnol. Bioeng., 82(1), 1-11(2003) https://doi.org/10.1002/bit.10533
  80. Lampert, J., 'Selective Catalytic Oxidation: a New Catalytic Approach to the Desulfurization of Natural Gas and Liquid Petroleum Gas for Fuel Cell Reformer Applications,' J. Power Sources, 131(1-2), 27-34(2004) https://doi.org/10.1016/j.jpowsour.2003.11.079
  81. Ma, X., Sung, L., Yin, Z. and Song, C., 'New Approaches to Deep Desulfurizaton of Diesel Fuel, Jet Fuel and Gasoline by Adsorption for Ultra-Clean Fuels and For Fuel Cell Applications,' Am. Chem. Soc. Div. Fuel Chem. Prep., 46(2), 648-649(2001)
  82. Ma, X., Sprague, M., Sun, L. and Song, C., 'Deep Desulfurizaton of Liquid Hydrocarbons by Selective Adsorption for Fuel Cell Applications,' Am. Chem. Soc. Div. Fuel Chem. Prep., 47(1), 48-49(2002)
  83. Roh, H. S., Jun, K. W., Kim, J. Y., Kim, J. W., Park, D. R., Kim, J. D. and Yang, S. S., 'Adsorptive Desulfurization of Natural Gas for Fuel Cells,' J. Ind. Eng. Chem., 10(4), 511-515(2004) https://doi.org/10.1021/ie50103a005
  84. Kim, J. Y., Oh, E. O., Kim, J. W., Roh, H. S., Jun, K. W. and Lee, C. H., 'Studies on Desulfurization of LNG with an Adsorbent,' Theo. & Appl. Chem. Eng., 10(1) 498-501 (2004)
  85. Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R. and Klett, M. G., Fuel Cell Handbook, 4th Ed., DOE/FETC-99/1076(1998)
  86. Privette, R. M., 'Fuel Processing Technology,' Proceedings of the Fuel Cell Tutorial at 25th International Technical Conference on Coal Utilization and Fuel Systems(2000)
  87. Krause, T., Kumar, R. and Krumpelt, M., 'Sulfur Removal from Reformate,' Proceedings of the Annual National Laboratory R&D Meeting of DOE Fuel Cell for Transportation Program(2002)
  88. Woods, R., 'Fuel-Flexible, Fuel-Processing Subsystem Development,' Proceedings of the Joint DOE/EPRI/GRI Review Conference on Fuel Cell Technology(1999)
  89. Privette, R. M., Flynn, T. J., Perna, M. A., Kneidel, K. E., King, D. L. and Cooper, M., 'Compact Fuel Processor for Fuel Cell Powered Vehicles,' Proceedings of the Joint DOE/EPRI/GRI Review Conference on Fuel Cell Technology(1999)
  90. Masuda, M., Okada, O., Tabata, T., Hirai, Y. and Fujita, H., 'Method of Desulfurization of Hydrocarbons,' U.S. Patent No. 6,042,798(2000)
  91. Gary, J. and Burtron, H. D., 'In Situ DRIFTS Investigation of the Steam Reforming of Methanol Over Pt/ceria,' Appl. Catal. A: Gen., 285, 43-49(2005) https://doi.org/10.1016/j.apcata.2005.02.006
  92. Yohei, T., Ryuji, K., Tatsuya, T. and Koichi, E., 'Steam Reforming of Dimethyl Ether Over Composite Catalysts of $\gamma-Al_{2}O_{3}$ and Cu-based Spinel,' Appl. Catal. B: Env., 57, 211-222(2005) https://doi.org/10.1016/j.apcatb.2004.11.007
  93. Gambini, M. and Vellini, M., 'Comparative Analysis of $H_{2}/O_{2}$ Cycle Power Plants Based on Different Hydrogen Production Systems from Fossil Fuels,' Int. J. Hydrogen Energ., 30, 593-604(2005) https://doi.org/10.1016/j.ijhydene.2004.06.001
  94. Mariana, M. V. M. S. and Martin, S., 'Autothermal Reforming of Methane Over $Pt/ZrO_{2}/Al_{2}O_{3}$ Catalysts,' Appl. Catal. A: Gen., 281, 19-24(2005) https://doi.org/10.1016/j.apcata.2004.11.007
  95. Lee, S. H. D., Applegate, D. V., Ahmed, S., Calderone, S. G. and Harvey, T. L., 'Hydrogen from Natural Gas: Part-Autothermal Reforming in an Integrated Fuel Processor,' Int. J. Hydrogen Energ., 30, 829-842(2005) https://doi.org/10.1016/j.ijhydene.2004.09.010
  96. Johannessen, E. and Jordal, K., 'Study of a $H_{2}$ Separating Membrane Reactor for Methane Steam Reforming at Conditions Relevant for Power Processor with CO2 Capture,' Energy Conv. & Manag., 46, 1059-1071(2005) https://doi.org/10.1016/j.enconman.2004.06.030
  97. Effendi, A., Hellgardt, K., Zhang, Z.-G. and Yoshida, T., 'Optimising $H_{2}$ Production from Model Biogas via Combined Steam Reforming and CO Shift Reactions,' Fuel, 84, 869-874(2005) https://doi.org/10.1016/j.fuel.2004.12.011
  98. Oguchi, H., Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y. and Imamura, S., 'Steam Reforming of Methanol Over $Cu/CeO_{2}/ZrO_{2}$ Catalysts,' Appl. Catal. A: Gen., 281, 69-73(2005) https://doi.org/10.1016/j.apcata.2004.11.014
  99. Schorfheide, J. J. and Schweizer, A. E., 'Cyclic Reforming Catalyst Regeneration,' U.S. Patent No. 5,391,292(1995)
  100. Bogdan P. L., 'Selective Bifunctional Multimetallic Reforming Catalyst', U.S. Patent No. 6,495,487B1(2002)
  101. Koji. M., 'Catalyst for Reforming of Methanol and Process of Preparing Same,' U.S. Patent No. 4,501,823(1985)
  102. Okada, O., Tabata, T. and Masuda, M., 'Process for Steam Reforming of Hydrocarbons,' U.S. Patent No. 5,124,140(1992)
  103. Okada, O., 'Method For Preparing Catalyst for Reforming Methanol,' Korea Patent No. 10-7013040(2002)
  104. Hagihara, K. and Umeno, M., 'Catalyst for Steam Reforming of Methanol and Method for Producing Hydrogen Therewith,' U.S. Patent No. 6,583,084(2003)
  105. Teziya, H., Tomoki, Y., Kojo, D. and Dakashi, W., 'Catalyst for Reforming Hydrocarbon and Method for Preparation Thereof, and Process for Reforming Hydrocarbon using Said Catalyst,' Korea Patent No. 10-7012569(2003)
  106. Primdahl, I. I. and Serra, G. P., 'Process for the Preparation of Ammonia Synthesis Gas,' U.S. Patent No. 5,211,880(1993)
  107. Haque, I. U. and Trimm, D. L., 'Process for Steam Reforming of Hydrocarbons,' U.S. Patent No. 5,595,719(1997)
  108. Rostrup-Nielsen, J. R. and Rostrup-Nielsen, T., 'Large-Scale Hydrogen Production,' CATTECH., 6, 150(2002) https://doi.org/10.1023/A:1020163012266
  109. Hao, S. R., 'Hydrocarbon Stream Reforming Process: Feedstock and Catalysts for Hydrogen Production in China,' Int. J. Hydrogen Energ., 23(5), 315-319(1998) https://doi.org/10.1016/S0360-3199(97)00073-6
  110. Moon, D. J., Sreekumar, K., Lee, S. D., Lee, B. G. and Kim, H. S., 'Studies on Gasoline Fuel Processor System for Fuel-Cell Powered Vehicles Application,' Appl. Catal. A:Gen., 215(1-2), 1-9(2001) https://doi.org/10.1016/S0926-860X(01)00526-9
  111. Moon, D. J., Ryu, J. W., Yoo, K. S. and Lee, B. G., 'Hydrogen Production by Autothermal Reforming Reaction of Gasoline over Ni Based Catalyst and it Applications,' Trans. of the Korea Hydrogen and New Energy Society, 15(4), 274-282(2004)
  112. Kim D. H., Moon, D. J., Yoo, K. S., Lee, B. G., Yoon Y. S., Kwak, B. S. and Hong, S. I., 'Ni-Based Catalyst for Steam Reforming of LPG in Hydrogen Station and Fuel Processor Systems,' 10th Korea & Japan Symposium on Catalysis, Matsue, Japan, 227-228(2005)
  113. Moon, D. J., Kim, D. H., Ahn, B. S. and Lee, B. G., 'Steam Reforming Catalyst of Hydrocarbons for Hydrocarhons for Hydrogen Station and Fuel Processor,' The 4th Asia-Pacific Chemical Reaction Engineering Symposium (APCRE), Gyeongju, 197-198(2005)
  114. Jiang, L., Wang, G.-C., Cai, Z.-S., Pan, Y.-M. and Zhao, X.-Z., 'Promotion of the Water Gas Shift Reaction by Pre-Adsorbed Oxygen on Cu(hkl) Surfaces: a Theoretical Study,' J. Mol. Struct., 710, 97-104(2004) https://doi.org/10.1016/j.theochem.2004.09.007
  115. Ghenciu, A. F., 'Review of Fuel Processing Catalysts for Hydrogen Production in PEM Fuel Cell Systems,' Curr. Opin. Solid. STM., 6(5), 389-399(2002) https://doi.org/10.1016/S1359-0286(02)00108-0
  116. Keiski, R. L., Desponds, O. Y., Chan, G. and Somorjai, A., 'Kinetics of the Water-Gas Shift Reaction over Several Alkane Activation and Water-Gas Shift Catalysts,' Appl. Catal. A: Gen, 101, 317-338(1993) https://doi.org/10.1016/0926-860X(93)80277-W
  117. Choung, S. Y., Ferrandon, M. and Krause, T., 'Pt-Re Bimetallic Supported on $CeO_{2}-ZrO_{2}$ Mixed Oxides as Water Gas Shift Catalysts,' Catal. Today, 99, 257-262(2005) https://doi.org/10.1016/j.cattod.2004.10.002
  118. Fu, Q., Deng, W., Saltsburg, H. and Maria, F.-S., 'Activity and Stability of Low-Content Gold-Cerium Oxide Catalysts for the Water Gas Shift Reaction,' Appl. Catal. B: Env., 56, 57-68(2005) https://doi.org/10.1016/j.apcatb.2004.07.015
  119. Chanenchuk, C. A., Yates, I. C. and Satterfield, C. N., 'The Fischer-Tropsch Synthesis with a Mechanical Mixture of a Cobalt Catlayst and a Coppper-Based Water Gas Shift Catalyst,' Energy & Fuels, 5(6), 847-855(1991) https://doi.org/10.1021/ef00030a012
  120. Patt, J., Moon, D. J., Phillips, C. and Thompson, L., 'Molybdenum Carbide Catalysts for Water–Gas Shift,' Catal. Lett., 65, 193-199(2000) https://doi.org/10.1023/A:1019098112056
  121. Liu, X., Ruettinger, W., Xu, X. and Farrauto, R., 'Deactivation of $Pt/CeO_{2}$ Water Gas Shift Catalysts due to Shutdown/Starup Modes for Fuel Cell Applications,' Appl. Catal. B: Env., 56, 69-75(2005) https://doi.org/10.1016/j.apcatb.2004.04.026
  122. Jacobs, G., Graham, U. M., Chenu, E., Patterson, P. M., Dozier, A. and Davis, B. H., 'Low Temperature Water Gas Shift: Impact of Pt Promoter Loading on the Partial Reduction of Ceria and Consequences for Catalyst Design,' J. Catal., 229, 499-512(2005) https://doi.org/10.1016/j.jcat.2004.11.031
  123. Cai, Y., Davies, S. and Wagner, J., 'Water Gas Shift Catalyst,' U.S. Patent No. 6,627,572 B1(2003)
  124. Luengnaruemitchai, A., Osuwan, S. and Gulari, E., 'Comparative Studies of Low-Temperature Water–Gas Shift Reaction over $Pt/CeO_{2}$, $Au/CeO_{2}$, and $Au/Fe_{2}O_{3}$ Catalysts,' Catal. Comm., 4, 215-221(2003) https://doi.org/10.1016/S1566-7367(03)00036-0
  125. Kopasz, J. P., Applegate, D., Ruscic, L., Ahmed, S. and Krumpelt, M., 'Effects of Gasoline Components on Fuel Processing and Implications for Fuel Cell Fuels,' Fuel Cell 2000, 284-287(2000)
  126. Hou, P., Meeker, D. and Wise, H., 'Kinetic Studies with a Sulfur-Tolerant Water Gas Shift Catalyst,' J. Catal., 80, 280-291(1983) https://doi.org/10.1016/0021-9517(83)90253-1
  127. Hilaire, S., Wang, X., Luo, T., Gorte, R. J. and Wagner, J., 'Comparative Study of Water-Gas-Shift Reaction Over Ceria-Supported Metallic Catalysts,' Appl. Catal. A:Gen., 258, 271-276(2004) https://doi.org/10.1016/j.apcata.2003.09.026
  128. Swartz, S. L., Seabaugh, M. M., McCormick, B. E. and Dawson, W. J., 'Ceria-Based Water-Gas-Shift Catalysts,' Fuel Cell 2002, 587-590(2002)
  129. Tauster, S. J., Rabinowitz, H. N. and Dettling, J. C., 'Three-Way Conversion Catalyst Including a Ceria-Containing Zirconia Support,' U. S. Patent No. 5,139,992(1992)
  130. Kim, J. B., Han, J., Yoon, S. P., Nam, S. W., Lim, T. H., Hong, S. A. and Lee, K. Y., 'Development of $Ni-CeO_{2}$ Based WGS catalyst for Fuel Cell Vehicle Application,' Theo. & Appl. Chem. Eng., 8(1), 249-252(2002)
  131. Moon, D. J., Ryu, J. W., Lee, B. G., Ahn, B. S. and Hong, S. I., 'High Performance Water Gas Shift Catalysts For Fuel Cell Powered Vehicles Applications,' Fuel Cell 2003, 642-645(2003)
  132. Barg, C., Secchi, A. R., Trierweiler, J. O. and Ferreira, J. M. P., 'Simulation of an Industrial PSA Unit,' Lat. Am. Appl. Res., 31(5), 469-475(2001)
  133. Sircar, S. and Golden, T. C., 'Purification of Hydrogen by Pressure Swing Adsorption,' Separ. Sci. Technol., 35(5), 667-687(2000) https://doi.org/10.1081/SS-100100183
  134. http://www.uop.com
  135. Park, J. H., Kim, J. N. and Cho, S. H., 'Performance Analysis of Four-Bed $H_{2}$ PSA Process Using Layered Beds,' AIChE, 46(4), 790-802(2000) https://doi.org/10.1002/aic.690460413
  136. Choi, B. U., Hong, S. C., Choi, D. K., Lee, B. G., Baek, Y. S. and Lee, C. H., 'Experimental and Theoretical Study of $H_{2}$ Separation Using PSA Process,' Trans. of the Korean Hydrogen Energy Society, 14(1), 81-95(2003)
  137. Choi, B. U., Nam, G. M., Choi, D. K., Lee, B. G., Kim, S. H. and Lee, C. H., 'Adsorption and Regeneration Dynamic Characteristics of Methane and Hydrogen Binary System,' Korean J. Chem. Eng., 21(4), 821-828(2004) https://doi.org/10.1007/BF02705527
  138. Jee, J. G., Kim, M. B. and Lee, C. H., 'Pressure Swing Adsorption Processs to Purify Oxygen Using a Carbon Molecular Sieve,' Chem. Eng. Sci., 60, 869-882(2005) https://doi.org/10.1016/j.ces.2004.09.050
  139. Walter, H., Arsac, S., Bock, J., Siems, S. O., Canders, W. R., Leenders, A., Freyhardt, H. C., Fieseler, H. and Kesten, M., 'Liquid Hydrogen Tank with Cylindrical Superconducting Bearing for Automotive Application,' IEEE Transaction on Applied Superconductivity, 13(2), 2150-2153(2003) https://doi.org/10.1109/TASC.2003.813021
  140. Furuhama, S., Sakurai, T. and Shindo, M., 'Study of Evaporation Loss of Liquid-Hydrogen Storage Tank with $LH_{2}$ Pump,' Int. J. Hydrogen Energ., 18(1), 25-30(1993) https://doi.org/10.1016/0360-3199(93)90099-V
  141. Liu, B. H., Kim, D. M., Lee, K. Y. and Lee, J. Y., 'Hydrogen Storage Properties of $TiMn_{2}$-Based Alloys,' J. Alloy Compd., 240(1-2), 214-218(1996) https://doi.org/10.1016/0925-8388(96)02208-6
  142. Bobet, J. L. and Darriet, B., 'Relationship Between Hydrogen Sorption Properties and Crystallography for $TiMn_{2}$ Based Alloys,' Int. J. Hydrogen Energ., 25(8), 767-772(2000) https://doi.org/10.1016/S0360-3199(99)00101-9
  143. Yu, X. B., Xia, B. J., Wu, Z. and Xu, N. X., 'Phase Structure and Hydrogen Sorption Performance of Ti-Mn-Based Alloys,' Mat. Sci. Eng. A-Struct., 373(1-2), 303-308(2004) https://doi.org/10.1016/j.msea.2003.05.006
  144. http://www.hyundai-motor.com
  145. http://www.qtww.com
  146. http://www.dynetek.com