Adsoptive Properties of Cellulose Thermally Treated at Low Temperature and Its Solubility to Water

저온 열처리 셀룰로오스의 염기성가스 흡착과 용해특성

  • Jo, Tae-Su (Div. Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Ahn, Byung-Jun (Div. Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, Don-Ha (Div. Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Akihiko, Miyakoshi (Dep. of Material Chemistry, Asahikawa National College of Technology)
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 안병준 (국립산림과학원 화학미생물과) ;
  • 최돈하 (국립산림과학원 화학미생물과) ;
  • 宮越昭彦 (일본 욱천공업전문대학 물질화학공업과)
  • Received : 2005.06.07
  • Accepted : 2005.10.26
  • Published : 2005.11.25

Abstract

The purpose of this study was to investigate how to modify the physical properties of cellulose after thermal treatment. Cellulose was treated between $225^{\circ}C$ and $325^{\circ}C$ for 3 hrs under air flow, and then the thermally treated cellulose was measured to specific surface area, constitute elements, consumption ofacid and base, as well as the adsorption capacity of ethylamine vapor. The higher was the treating temperature from $225^{\circ}C$ to $325^{\circ}C$, the lower was the total yield of cellulose. Elemental analysis revealed that carbon content in thermally treated cellulose was gradually increased in proportion to temperature increment. The amount of acidic functional groups tended to increase up to $300^{\circ}C$, after then to be lowered slightly. In principle, no alkaline functional groups were found in thermally treated cellulose. In case of treatment with $325^{\circ}C$, only a few amount of alkaline functional groups were detectable. Specific surface area of thermally treated cellulose are determined to $1.9m^2/g$, which value can become higher when the treated temperature rises. The thermally treated cellulose at $275^{\circ}C$ shows the highest adsorption capacity of ethylamine at $40^{\circ}C$ for 4 hrs. Solubility of those two celluloses with WPG (Weight Percent Gain) value of 113% and 108%, respectively, was determined to almost 100%. X-ray diffractogram of thermally treated cellulose suggested that the crystalline structure of cellulose began to be destroyed at the temperature of $275^{\circ}C$. As a conclusion, changes of such a physical properties make it possible to weaken inter and/or intra hydrogen bond in crystal region of cellulose macromolecules. When thermally treated cellulose adsorbs ethylamine, it turns to be well soluble to water.

$225^{\circ}C$에서 $325^{\circ}C$ 이하의 저온에서 열처리한 셀룰로오스의 물성과 에틸아민 흡착특성을 열처리온도별로 조사하였다. 열처리온도의 증가와 더불어 수율이 감소하고, 탄소함량이 증가하는 반면, 수소나 산소의 함량은 감소하였다. 표면관능기량을 Boehm 법으로 측정한 결과, 열처리온도가 $300^{\circ}C$까지 올라가면 산성관능기량이 증가하였으나 그 이상의 온도에서는 다소 감소하는 경향이 있었다. 염기성관능기는 거의 존재하지 않았으며 열처리온도 $325^{\circ}C$에서 미량 확인할 수 있을 정도였다. 열처리셀룰로오스를 1점법으로 측정한 비표면적은 처리온도가 높으면 다소 증가하는 경향이 있었으나 매우 적었다. 열처리 온도가 증가할수록 셀룰로오스의 에틸아민증기 흡착량이 증가하여 $300^{\circ}C$ 처리 셀룰로오스의 에틸아민흡착에 의한 중량증가가 최대 113%를 나타내었다. $275^{\circ}C$에서 열처리셀룰로오스는 에틸아민 흡착 시, 팽윤이 일어나고 용해현상이 일어났다. $275^{\circ}C$ 이상의 온도에서 열처리한 셀룰로오스는 X선회절도 상에서 무정형화 하는 것으로 나타났다. 에틸아민 흡착한 열처리셀룰로오스의 용해 현상은 셀룰로오스의 결정구조 붕괴와 염기성 가스의 흡착량 증가에 의한 것으로 추측된다.

Keywords

References

  1. 조태수, 안병준, 최돈하. 2005. 한국목재공학회. 33(3) : 45-52
  2. Ikuo Abe, Mitsunori Hitomi, Nobuo Ikuta, Isao Kawafune, Kenichiro Noda, and Yoshiya Kera, 1995. Humidity-Control Capacity of Microporous Carbon. Seikatsu Eisei. 39(6): 333-336
  3. Boehm. H. P., 1966. Adv. in Catalysis. 16: 179-274 https://doi.org/10.1016/S0360-0564(08)60354-5
  4. Boehm. H. P., 1994. Carbon. 32(5): 759-769 https://doi.org/10.1016/0008-6223(94)90031-0
  5. Toshimi. Hirata and Hiroshi Abe. 1973. Pyrolysis of Wood and Cellulose, and Effects of Inorganic Salts on the Pyrolyses, Measured by Thermogravimetric and Differential Thermal Analysis Techniques I.-Kinetics of the pyrolyses of Untreated Wood and Cellulose in vacuo. Mokuzai Gakkaishi. 19(9): 451-459
  6. Tsutomu Suzuki, Tetsuo Yamada, Noriyasu Okazaki, Akio Tada, Mikio Nakanishi, Masami Futamata, and Hsin-Tai Chen. 2001. Electromagnetic Shielding Capacity of Wood Char Loaded with Nickel. Material Science Research International. 7(3): 206-212
  7. 空閑重則. 2001. SEN'I GAKKAISHI (織維と工業). 57(8): 212-215 https://doi.org/10.2115/fiber.57.212
  8. 近藤民雄, 米擇保正, 右田伸彦. 1978. 木材化學. 共立出版株式會社. p.85
  9. 本間千晶. 2001. 木材の液化. 林産試だより. 3: 4-7
  10. 本間千晶, 梅原勝雄, 佐野彌生子. 1998. トドマツ材炭化物の化學構造と炭化時の酸素濃度 との關係. 日本木材學會北海道支部講演集. 第30號. 69-70
  11. 本間千晶, 寖田 實, 駒澤克己 1998. 特開平 10-251522
  12. 本間千晶, 佐野彌生子, 梅原勝雄, 駒澤克己. 2000. 木材學會誌. 46(4): 348-354
  13. 石原茂久. 1998. 殘廢木材の高溫燒成炭と遷移金屬元素酸化物の複合による無害化變換材 料の開發. 平成 8-9年度文部省科學硏究費補助金 [基礎硏究(A)(I)] 硏究成果報告書
  14. 安部郁夫. 1994. 吸着劑として見直される木炭. 科學と工業. 68(4): 161-169
  15. 安部郁夫, 岩崎 訓, 岩田良美, 古南 博, 計良善也. 1998. 木炭の製造方法と吸着特性の關係. 炭素. 185: 277-284
  16. 人見充則, 計良善也, 立體英機, 安部郁夫, 川舟功朗, 幾田信生. 1993. 多孔性炭素材料の 吸看性能評價法(スギ及びヒノキからの木炭の製造と物性). 炭素. 160: 247-254
  17. 平田利美. 1995. 木材およびセルロ一スの熱分解速度論. 木材學會誌. 41(10): 879-886