Understanding Stress by Neuroscience

스트레스의 두뇌 과학적 이해

Yoon, Su-Jung;Kim, Tae-Suk;Chae, Jeong-Ho
윤수정;김태석;채정호

  • Published : 20050800

Abstract

Stress can be defined generally as reponses to stressors on the body or in a definition more focused on the central nervous system, it can be defined as alterations in neuro-psychological homeostatic processes. There is a psychological aspect to stress, related to issues such as memory, emotion, arousal, and also a biological aspect which included activation of specific brain and endocrine circuits. This article reviews a series of neurobiological mechanisms aimed at understanding what are pathways by which stress is perceived, processed, and transduced into a neuroendocrine response. Multiple brain structures are involved in the organization of responses to stressful stimuli. Among them the hypothalamus, septohippocampal structures, amygdala, cingulate and prefrontal cortices, hindbrain regions such as the brainstem catecholamine cell body group (A2/C2 cell groups in the nucleus of the tractus solitaris; A1/C1 cell groups in the ventrolateral medulla; A6 cell groups in the locus ceruleus), the parabrachial nucleus, cuneiform nucleus, and dorsal raphe nucleus are prominent structures. We reviewed with the focus on the classic stress circuits: the limbichypothalamic-pituitary- adrenal axis (LHPA) and locus ceruleus-norepinephrine (LC-NE) system. Our review indicates that the LHPA stress circuit and LC- NE system are the complex systems with multiple control mechanisms and that these mechanisms are altered in pathological states, such as chronic stress and depression. The holistic features described in this reviews can provide insight into the nature and location of brain circuits and neurotransmitter receptors involved in stress and the treatment of stress-related disorders.

개체가 '스트레스 인자(stressor)'에 노출되면 일련의 스트레스 반응이 일어난다. 뇌하수체-부신 축 활성화를 포함하여 내분비계, 자율신경계, 면역계 등의 생리적 변화가 일어나며, 심리적 측면으로 각성수준, 기억, 정서 등이 다양하게 변화한다. 이러한 기저에는 두뇌의 변화가 가장 중심적인 역할을 한다. 본 논문에서는 이러한 스트레스의 행동적, 생리학적 반응을 매개하는 주요 조절자 역할을 하는 두뇌의 변화를 뇌신경과학적 측면에서 고찰하고자 한다. 스트레스 반응에는 시상하부(hypothalamus), 중격-해마 시스템(septohippocamplal system), 편도(amygdala), 대상회 및 전전두엽 피질(cingulate and prefrontal cortex) 등의 전뇌(forebrain) 부위와 뇌간 카테콜라민 세포군(brainstem catecholamine cell body group; nucleus of the tractus solitaris의 A2/C2 세포군, ventrolateral medulla의 A1/C1 세포군, locus coeruleus의 A6 세포군), 방완핵(parabrachial nucleus), 설상핵(cuneiform nucleus), 배측 봉선핵(dorsal raphe nucleus) 등 매우 다양한 뇌 부위가 관여한다. 이러한 뇌의 여러 영역의 활성 변화를 크게 변연계-시상하부-뇌하수체-부신 축(limbic-hypothalamic-pituitary-adrenal axis, LHPA)과 청반-노르에피네프린/자율신경계 (locus ceruleus-norepinephrine, LC-NE/autonomic) 경로로 구분할 수 있다. 본 논문은 스트레스 반응에 있어 중추적인 역할을 한다고 알려진 LPHA와 LC-NE 시스템을 중심으로 하여 스트레스 반응의 신경생물학적 기전과 스트레스 시스템 과활성과 관련된 질환의 발병과의 연관성에 대하여 뇌신경과학적 접근을 통하여 고찰하여 스트레스 상황을 많이 접하는 일차 진료의로서 스트레스에 대한 이해를 심화할 수 있는 목적으로 작성되었다.

Keywords

References

  1. Levine S, Ursin H. What id stress? In: Brown MR, Koob GF, River C, editors. Stress, neurobiology and neuroendocrinology. New York: Marcel Dekker; 1991. p. 1-21
  2. Selye H. The stress of life. New York: MaGraw Hill; 1956
  3. Burchfield SR. The stress response: a new perspective. Psychosom Med 1979;41:661-72 https://doi.org/10.1097/00006842-197912000-00008
  4. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992;267:1244-52 https://doi.org/10.1001/jama.267.9.1244
  5. Van de Kar LD, Blair ML. Forebrain pathways mediating stress-induced hormone secretion. Front Neuroendocrinol 1999;20:1-48 https://doi.org/10.1006/frne.1998.0172
  6. Tsigos C, Chrousos GP. Stress, endocrine manifestations, and diseases. In: Cooper CL, editor. Handbook of stress, medicine, and health. CRC Press; 1995. p. 61-85
  7. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev 1984;5:1-24 https://doi.org/10.1210/edrv-5-1-1
  8. McEwen BS, Wallach G, Magnus C. Corticostreone binding to hippocampus: immediate and delayed influences of the absence of adrenal secretion. Brain Res 1974;70:321-34 https://doi.org/10.1016/0006-8993(74)90321-7
  9. Selye H. A syndrome produced by diverse nocuous agents. Nature 1936;138:32
  10. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946;6:117-230 https://doi.org/10.1210/jcem-6-2-117
  11. Amiragova MG. Neurophysiological analysis of the development of endocrine and hypertensive reactions in prolonged emotional stress. Brain Res 1985;344:303-15 https://doi.org/10.1016/0006-8993(85)90808-X
  12. Korte SM, Jaarsma D, Luiten PG, Bohus B. Mesencephalic cuneiform nucleus and its ascending and descending projections serve stress-related cardiovascular responses in the rat. J Auton Nerv Syst 1992;41:157-76 https://doi.org/10.1016/0165-1838(92)90137-6
  13. Pezzone MA, Lee WS, Hoffman GE, Rabin BS. Induction of c-Fos immunoreactivity in the rat forebrain by conditioned and unconditioned aversive stimuli. Brain Res 1992;597: 41-50 https://doi.org/10.1016/0006-8993(92)91503-7
  14. Davis M, Hitchcock JM, Bowers MB, Berridge CW, Melia KR, Roth RH. Stress-induced activation of prefrontal cortex dopamine turnover: blockade by lesions of the amygdala. Brain Res 1994;664:207-10 https://doi.org/10.1016/0006-8993(94)91972-0
  15. Davis M, Rainnie D, Cassell M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 1994; 17:208-14 https://doi.org/10.1016/0166-2236(94)90106-6
  16. LeDoux JE. Emotion: clues from the brain. Annu Rev Psychol 1995;46:209-35 https://doi.org/10.1146/annurev.ps.46.020195.001233
  17. Petrov T, Jhamandas JH, Krukoff TL. Electrical stimulation of the central nucleus of the amygdala induces fos-like immunoreactivity in the hypothalamus of the rat: a quantitative study. Brain Res Mol Brain Res 1994;22:333-40 https://doi.org/10.1016/0169-328X(94)90063-9
  18. Petrov T, Krukoff TL, Jhamandas JH. Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 1994;277:289-95 https://doi.org/10.1007/BF00327776
  19. Wallace DM, Magnuson DJ, Gray TS. Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat. Brain Res Bull 1992; 28:447-54 https://doi.org/10.1016/0361-9230(92)90046-Z
  20. Cullinan WE, Herman JP, Waston SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 1993;332:1-20 https://doi.org/10.1002/cne.903320102
  21. Gray TS, Carney ME, Magnuson DJ. Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 1989;50:433-46 https://doi.org/10.1159/000125260
  22. Gray TS. Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann NY Acad Sci 1993;697:53-60 https://doi.org/10.1111/j.1749-6632.1993.tb49922.x
  23. Gray TS, Piechowski RA, Yracheta JM, Rittenhouse PA, Bethea CL, Van de Kar LD. Ibotenic acid lesions in the bed nucleus of stria terminalis attenuate conditioned stress-induced increases in prolactin, ACTH and corticosterone. Neuroendocrinology 1993;57:517-24 https://doi.org/10.1159/000126400
  24. Feldman S, Conforti N, Chowers I. Adrenocortical responses following sciatic nerve stimulation in rats with partial hypothalamic deafferentations. Acta Endocrinol 1975;80:625-9
  25. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 1983;6:269-324 https://doi.org/10.1146/annurev.ne.06.030183.001413
  26. Swanson LW. The hypothalamus. In: Bjorklund A. Hokfelt T, Swanson LW, editors. Handbook of chemical neuroanatomy: integrated systems of the CNS. Amsterdam: Elsevier; 1987. p. 1-124
  27. Cole RL, Sawchenko PE. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of hypothalamus. J Neurosci 2002;22:959- 69
  28. Penalva RG, Flachskamm C, Zimmermann S, Wurst W, Holsboer F, Reul JM, et al. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice. Neuroscience 2002;109:253-66 https://doi.org/10.1016/S0306-4522(01)00475-4
  29. Koob GF. Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 1999;46:1167-80 https://doi.org/10.1016/S0006-3223(99)00164-X
  30. Valentino RJ, Foote SL, Page ME. The locus coereleus as a site for integrating corticotropin-releasing factor and noradrenergic mediation of stress responses. Ann NY Acad Sci 1993;697:173-88 https://doi.org/10.1111/j.1749-6632.1993.tb49931.x
  31. Kirby LG, Rice KC, Valentino RJ. Effects of corticotropinreleasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 2000;22:148-62 https://doi.org/10.1016/S0893-133X(99)00093-7
  32. Lowry CA, Rodda JE, Lightman SL, Ingram CD. Corticotropin- releasing factor increases in vitro firing rates of serotonergic neurons in the rat dorsal raphe nucleus: evidence for activation of a topographically organized mesolimbocortical serotonergic system. J Neurosci 2000;20:7728-36
  33. Valentino RJ, Liouterman L, Van Bockstaele EJ. Evidence for regional heterogenity in corticotropin-releasing factor interactions in the dorsal raphe nucleus. J Comp Neurol 2001;435: 450-63 https://doi.org/10.1002/cne.1043
  34. Aghajanian GK, Vandermaelen CP. Intracellular identification of central noradrenergic and serotonergic neurons by a new double labelling procedure. J Neurosci 1982;2:1786-92
  35. Calogero AE, Gallucci WT, Gold PW, Chrousos GP. Multiple feedback regulatory loops upon rat hypothalamic corticotropinreleasing hormone secretion. Potential clinical implications. J Clin Invest 1988;82:767-74 https://doi.org/10.1172/JCI113677
  36. Strakakis CA, Chrousos GP. Neuroendocrinology and pathophysiology of the stress system. Ann NY Acad Sci 1995; 771:1-18 https://doi.org/10.1111/j.1749-6632.1995.tb44666.x
  37. Strakakis CA, Gold PW, Chrousos GP. Neuroendocrinology of stress: implications for growth and development. Horm Res 1995;43:162-7 https://doi.org/10.1159/000184269
  38. Swanson LW, Simmons DM. Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 1989;285:413-35 https://doi.org/10.1002/cne.902850402
  39. Yi SJ, Masters JN, Baram TZ. Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neuronal rat. Brain Res Dev Brain Res 1993;73:253-9 https://doi.org/10.1016/0165-3806(93)90145-Z
  40. Meijer OC, de Kloet ER. Corticosterone and serotonergic neurotransmission in the hippocampus: functional implications of central corticosteroid receptor diversity. Crit Rev Neurobiol 1998;12:1-20 https://doi.org/10.1615/CritRevNeurobiol.v12.i1-2.10
  41. Meijer OC, Kortekaas R, Oitzl MS, de Kloet ER. Acute rise in corticosterone facilitates 5-HT(1A) receptor-mediated behavioral responses. Eur J Pharmacol 1998;351:7-14 https://doi.org/10.1016/S0014-2999(98)00289-1
  42. Evans RM, Arriza JL. A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron 1989;2:1105-12 https://doi.org/10.1016/0896-6273(89)90177-3
  43. Gesing A, Bilang-Bleuel A, Droste SK, Linthorst AC, Holsboer F, Reul JM. Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropinreleasing hormone. J Neurosci 2001;21:4822-9
  44. de Kloet ER. Stress in brain. Eur J Pharmacol 2000;405: 187-98 https://doi.org/10.1016/S0014-2999(00)00552-5
  45. Sala M, Perez J, Soloff P, Ucelli di Nemi S, Caverzasi E, Soares JC, et al. Stress and hippocampal abnormalities in psychiatric disorders. Eur Neuropsychopharmacol 2004;14:393-405 https://doi.org/10.1016/j.euroneuro.2003.12.005
  46. Oitzl MS, van Haarst AD, Sutanto W, de Kloet ER. Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis: the Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 1995; 20:655-75 https://doi.org/10.1016/0306-4530(95)00003-7
  47. van Haarst AD, Oitzl MS, de Kloet ER. Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochem Res 1997;22:1323-1328 https://doi.org/10.1023/A:1022010904600
  48. De Souza EB. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995;20:789-819 https://doi.org/10.1016/0306-4530(95)00011-9
  49. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev Brain Res 1990;15:71-100 https://doi.org/10.1016/0165-0173(90)90012-D
  50. Owens MJ, Nemeroff CB. The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. Ciba Found Symp 1993;172:296-308
  51. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41- residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981;213:1394-7 https://doi.org/10.1126/science.6267699
  52. Van de Kar LD. Neuroendocrine pharmacology of serotonergic (5-HT) neuron. Annu Rev Pharmacol Toxicol 1991;31:289- 320 https://doi.org/10.1146/annurev.pa.31.040191.001445
  53. Bittencourt JC, Sawchenko PE. Do centrally administered neuropeptides access cognate receptors: an analysis in the central corticotropin-releasing factor system. J Neurosci 2000; 20:1142-56
  54. Dautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 2002;23:71-7 https://doi.org/10.1016/S0165-6147(02)01946-6
  55. Reul JM, Holsboer F. Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2002;2:23-33 https://doi.org/10.1016/S1471-4892(01)00117-5
  56. Chang CP, Pearse RV 2nd, O'Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993;11:1187-1195 https://doi.org/10.1016/0896-6273(93)90230-O
  57. Chen R. Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasing-factor receptors. Proc Natl Acad Sci USA 1993;90:8967-71
  58. Vita N, Laurent P, Lefort S, Chalon P, Lelias JM, Kaghad M, et al. Primary structure and functional expression of mouse pituitary and human brain corticotropin releasing factor receptor. FEBS Lett 1993;335:1-5 https://doi.org/10.1016/0014-5793(93)80427-V
  59. Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian, et al. Identification of a second corticotropinreleasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci USA 1995;92:2969-2973
  60. Arai M, Assil IQ, Abou-Samra AB. Characterization of three corticotropin-releasing factor receptors in catfish: a novel third receptor is predominantly expressed in pituitary and urophysis. Endocrinology 2001;142:446-54 https://doi.org/10.1210/en.142.1.446
  61. Primus RJ, Yevich E, Baltazar C, Gallager DW. Autoradiographic localization of $CRF_1$ and $CRF_2$ binding sites in adult rat brain. Neuropsychopharmacology 1997;17:308-16 https://doi.org/10.1016/S0893-133X(97)00071-7
  62. Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor ($CRF_2$) mRNA expression to specific subcortical nuclei in rat brain: comparison with $CRF_1$ receptor mRNA expression. J Neurosci 1995;15:6340-50
  63. Britton DR, Varela M, Garcia A, Rosenthal M. Dexamethasone suppresses pituitary-adrenal but not behavioral effects of centrally administered CRF. Life Sci 1986;38:211-6 https://doi.org/10.1016/0024-3205(86)90305-X
  64. Eaves M, Thatcher-Britton K, Rivier J, Vale W, Koob GF. Effects of corticotropin releasing factor on locolotor activity in hypophysectomized rats. Peptides 1985;6:923-6 https://doi.org/10.1016/0196-9781(85)90323-7
  65. Curtis AL, Grigoriadis DE, Page ME, Rivier J, Valentino RJ. Pharmacological comparison of two corticotropin-releasing factor antagonists: in vivo and in vitro studies. J Pharmacol Exp Ther 1994;268:359-65
  66. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995;378:287-92 https://doi.org/10.1038/378287a0
  67. Krahn DD, Gosnell BA, Grace M, Levine AS. CRF antagonist partially reverses CRF- and stress-induced effects on feeding. Brain Res Bull 1986;17:285-9 https://doi.org/10.1016/0361-9230(86)90233-9
  68. Stenzel-Poore MP, Heinrichs SC, Rivest S, Koob GF, Vale WW. Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J Neurosci 1994;14:2579-84
  69. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, et al. Corticotropin releasing factor receptor 1- deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20:1093-102 https://doi.org/10.1016/S0896-6273(00)80491-2
  70. Van Bockstaele EJ, Colago EE, Valentino RJ. Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the coordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 1998;10:743-57 https://doi.org/10.1046/j.1365-2826.1998.00254.x
  71. Korf J Aghajanian GK, Roth RH. Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology 1973;12:933-8 https://doi.org/10.1016/0028-3908(73)90024-5
  72. Melia KR, Duman RS. Involvement of corticotropin-releasing factor in chronic stress regulation of the brain noradrenergic system. Proc Natl Acad Sci USA 1991;88:8382-8386
  73. Cassens G, Roffman M, Kuruc A, Orsulak PJ, Schildkraut JJ. Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science 1980;209:1138-40 https://doi.org/10.1126/science.7403874
  74. Foote SL, Aston-Jones GS. Pharmacology and physiology of central noradrenergic systems. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press; 1995. p. 335-45
  75. Robbins TW, Everitt BJ. Central norepinephrine neurons and behavior. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press; 1995. p. 363-72
  76. Brown MR, Fisher LA, Rivier J, Spiess J, River C, Vale W. Corticotropin-releasing factor: effects on the sympathetic nervous system and oxygen consumption. Life Sci 1982;30: 207-10 https://doi.org/10.1016/0024-3205(82)90654-3
  77. Fisher LA, Rivier J, Rivier C, Spiess J, Vale W, Brown MR. Corticotropin-releasing factor (CRF): central effects on mean arterial pressure and heart rate in rats. Endocrinology 1982; 110:2222-4 https://doi.org/10.1210/endo-110-6-2222
  78. Chappell PB, Smith MA, Kilts CD, Bissette G, Ritchie J, Anderson C, et al. Alterations in corticotropin-releasing factorlike immunoreactivity in discrete rat brain regions after acute and chronic stress. J Neurosci 1986;6:2908-14
  79. Dunn AJ, Berridge CW. Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol Biochem Behav 1987;27:685-91 https://doi.org/10.1016/0091-3057(87)90195-X
  80. Swiergiel AH, Takahashi LK, Rubin WW, Kalin NH. Antagonism of corticotropin-releasing factor receptors in the locus coeruleus attenuates shock-induced freezing in rats. Brain Res 1992;587:263-8 https://doi.org/10.1016/0006-8993(92)91006-Z
  81. Pacak K, Palkovits M, Kopin IJ, Goldstein DS. Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol 1995;16:89-150 https://doi.org/10.1006/frne.1995.1004
  82. Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I. Immunocytochemical evidence for stimulatory control by ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone and vasopressin in rats. Brain Res 1986;397:297-307 https://doi.org/10.1016/0006-8993(86)90631-1
  83. Liposits Z, Phelix C, Paull WK. Synaptic interaction of serotonergic axons and corticotropin releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry 1987;86:541-9 https://doi.org/10.1007/BF00489545
  84. Phelix CF, Liposits Z, Paull WK. Catecholamine-CRF synaptic interaction in a septal bed nucleus: afferents of neurons in the bed nucleus of the stria terminalis. Brain Res Bull 1994;33: 109-19 https://doi.org/10.1016/0361-9230(94)90056-6
  85. Pacak K, McCarty R, Palkovits M, Kopin IJ, Goldstein DS. Effects of immobilization on in vivo release of norepinephrine in the bed nucleus of the stria terminalis in conscious rats. Brain Res 1995;688:242-6 https://doi.org/10.1016/0006-8993(95)00566-9
  86. Lee Y, Davis M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 1997;17:6434-46
  87. Liang KC, Melia KR, Miserendino MJ, Falls WA, Campeau S, Davis M. Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci 1992;12: 2303-12
  88. Liang KC, Melia KR, Campeau S, Falls WA, Miserendino MJ, Davis M. Lesions of the central nucleus of the amygdala, but not the paraventricular nucleus of the hypothalamus, block the excitatory effects if corticotropin-releasing factor on acoustic startle reflex. J Neurosci 1992;12:2313-20
  89. Quirarte GL, Galvez R, Roozendaal B, McGaugh JL. Norepinephrine release in the amygdala in response to footshock and opioid peptidergic drugs. Brain Res 1998;808:134-40 https://doi.org/10.1016/S0006-8993(98)00795-1
  90. Raber J, Koob GF, Bloom FE. Interleukin-2 (IL-2) induces corticotropin-releasing factor (CRF) release from the amygdala and involves a nitric oxide-mediated signaling; comparison with the hypothalamic response. J Pharmacol Exp Ther 1995;272: 815-24
  91. Baxter JD, Tyrrell KB. The adrenal cortex. In: Felig P, Baxter JD, Broauds AE, Frohman LA, editors. Endocrinology and metabolism. New York: McGraw-Hill; 1987. p. 385-511
  92. Brindley DN, Rolland Y. Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Clin Sci 1989;77: 453-61 https://doi.org/10.1042/cs0770453
  93. Brindley DN, Rolland Y, Brindley DN, Rolland Y. Physiological functions of glucocorticoids in stress and their relations to pharmacological actions. Endocr Rev 1984;5:25-44 https://doi.org/10.1210/edrv-5-1-25
  94. Cahill L, McGaugh JL. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci 1998;21:294-9 https://doi.org/10.1016/S0166-2236(97)01214-9
  95. Lupien S, Meaney MJ. Stress, glucocorticoids and hippocampus aging in rat and human. In: Wang E, Snyder S, editors. Handbook of human aging. New York: Academic press; 1998. p. 19-50
  96. Nemeroff CB. The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1996;1:336-42
  97. Woolley CS, Gould E, McEwen BS. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 1990;531:225-31 https://doi.org/10.1016/0006-8993(90)90778-A
  98. Magarinos AM, McEwen BS, Flugge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neuosci 1996;16:3534-40
  99. Magarinos AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 1997;94:14002-14008
  100. Mizoguchi K, Kunishita T, Chui DH, Tabira T. Stress induces neuronal death in the hippocampus of castrated rats. Neurosci Lett 1992;138:157-60 https://doi.org/10.1016/0304-3940(92)90495-S
  101. Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001;25:836-44 https://doi.org/10.1016/S0893-133X(01)00358-X
  102. Schulkin J, Gold PW, McEwen BS. Induction of corticotropin- releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 1998;23:219-43 https://doi.org/10.1016/S0306-4530(97)00099-1
  103. Gold PW, Goodwin F, Chrousos GP. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress. (1). N Engl J Med 1988;319:348-53 https://doi.org/10.1056/NEJM198808113190606
  104. Chrousos GP. Stressors, stress, and neuroendocrine integration of the adaptive response. The 1997 Hans Selye Memorial Lecture. Ann NY Acad Sci 1998;851:311-35 https://doi.org/10.1111/j.1749-6632.1998.tb09006.x
  105. 정용안, 정재승, 김 원, 박원명, 전태연, 김광수 등. 외상 후 스트레스장애 환자의 대뇌 관류 변화. 대한불안장애학회 춘계학술대회 초록집. 서울:대한불안장애학회;2004
  106. Chae JH, Jeong J, Peterson BS, Kim DJ, Bahk WM, Jun TY, et al. Dimensional complexity of the EEG in patients with posttraumatic stress disorder. Psychiatry Res 2004; 131:79-89 https://doi.org/10.1016/j.pscychresns.2003.05.002
  107. Heuser I, Lammers CH. Stress and brain. Neurobiol Aging 2003;24(suppl 1):69-76 https://doi.org/10.1016/S0197-4580(03)00048-4
  108. Habib KE, Weld KP, Rice KC, Pushkas J, Champoux M, Listwak S, et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates. Proc Natl Aca Sci USA 2000;97:6079-6084
  109. Ward HE, Johnson EA, Salm AK, Birkle DL. Effects of prenatal stress on defensive withdrawal behavior and corticotropin releasing factor systems in rat brain. Physiol Behav 2000;70:359-66 https://doi.org/10.1016/S0031-9384(00)00270-5