Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control

대기오염물질 제어를 위한 생물살수여과법의 운전인자와 성능평가

  • Won, Yang-Soo (Department of Environmental Engineering, Yeungnam University)
  • Received : 2005.03.02
  • Accepted : 2005.04.21
  • Published : 2005.08.10

Abstract

Biological treatment is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreactor, in particular biotrickling filters. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited, the evident success of biotreatment of VOC in air stimulated the pursue of acitve research. This paper presents fundamental and theoretical/practical aspect of air pollution control in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control in biotrickling filter.

생물학적 방법에 의한 대기오염물질 처리는 기존의 처리방법을 대체할 수 있는 방법으로 각광을 받고 있다. 생물학적 처리방법은 유기화합물 또는 악취가 포함된 저농도 고유량의 공기를 처리하는데 효과적이다. 생물학적 처리 방법은 기존의 소각 또는 흡착 방법에 비해 여러 장점을 가지고 있다. 주요 장점으로 처리비용이 저렴하고, 2차 오염물질이 발생되지 않으며, 화학물질이 사용되지 않고, 에너지 사용이 적으며, 상온에서의 운전 등이다. 대기오염물질을 생물학적 방법으로 처리하는데는 생물여과법이 많이 이용되고 있으나 여러 제약이 있어 이를 해결할 수 있는 방법으로 생물살수여과법에 대한 개발연구가 수년 전부터 수행되어 왔다. 생물살수여과법은 생물여과법에 비해 다소 복잡하나 난분해성 물질이나 분해과정에서 산이 생성되는 경우 효과적으로 이용될 수 있다. 그러나 생물살수여과법을 이용한 대기중 VOC 처리에 대한 연구는 초기단계로서 효율적인 처리를 위해 많은 연구가 진행중이다. 본 연구에서는 대기오염제어를 위한 생물살수여과법의 기본 원리와 이론 및 실용적 내용에 대하여 소개하고자 한다. 특히 생물살수여과법의 운전인자와 성능에 미치는 영향인자에 대하여 중점적으로 다루었다.

Keywords

Acknowledgement

Supported by : 영남대학교

References

  1. J. S. Devinny, M. A. Deshusses, and T. S. Webster, Biofiltration for air pollution control, Lewis publisher (1999)
  2. Y. S. Won and M. A. Desusses, J. Korean Soc. Atmo, Environ., 19, 101 (2003)
  3. L. Philip and M. A. Desusses, Environ. Sci. Technol., 37, 1978 (2003) https://doi.org/10.1021/es026009d
  4. Y. S. Won, D. H. Han, T. Stuchinskaya, W. S. Park, and H. S. Lee, Radiation Physic and Chemistly, 63, 165 (2002)
  5. Y. P. Wu and Y. S. Won, J. Ind. Eng. Chem., 9, 775 (2003)
  6. T. J. Lee, J. D. Lee, and W. C. Chang, J. Korean lnd. Eng. Chem., 14, 519 (2003)
  7. E. Kan and M. A. Deshusses, Biotechnol. Bioeng., 84, 240 (2003) https://doi.org/10.1002/bit.10767
  8. C. Kennes and M. C. Veiga, Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers (2001)
  9. A. M. Kosteltz, A. Finkelstein, and G. Sears, Air & Waste Manage. Assoc. 89th Annual Conference and Exhibition, Pittsburgh, PA, paper #96-RA87B.02 (1996)
  10. S. P. P. Ottengraf, Exhaust gas puritication, Biotechnology, edited by Rehm, H. J. and Reed, G., Vol. 8, VCH Verlagsgesellschaft, Weinheim (1986)
  11. Y. Yang and E. R. Allen, J. Air & Waste Manage. Assoc., 44, 863 ( 1994)
  12. Y. Yang and E. R. Allen, J. Air & Waste Manage. Assoc., 44, 1315 (1994)
  13. C. Kennes and F. Thalasso, J. Chem. Technol. Biotechnol., 72, 303 (1998) https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  14. M. A. Deshusses and H. H. J. Cox, Encyclopaedia Environmental Microbiology, McGraw Hill (2001)
  15. H. H. J. Cox and M. A. Deshusses, Wat. Res., 33, 2383 (1999) https://doi.org/10.1016/S0043-1354(98)00452-7
  16. F. J. Smith and G. A Sorial, J. Air & Waste Manage. Assoc., 48, 627 (1998) https://doi.org/10.1080/10473289.1998.10463712
  17. Y. S. Won and M. A. Desusses, submitted to Biotechnol. Bioeng. (2005)
  18. R. M. M. Diks and S. P. P. Ottengra, Bioproc. Eng., 6, 131 (1991) https://doi.org/10.1007/BF00369249
  19. S. Hartmans and J. Tramper, Bioproc. Eng., 6, 83 (1991) https://doi.org/10.1007/BF00369060
  20. D. G. Allen and Z. Kong, 93rd Annual Meeting Proceeding, Air & Waste Manage. Assoc. Pittsburg, PA (2000)
  21. H. H. J. Cox, T. Sexton, Z. M. Shareefdeen, and M. A. Deshusses, Environ. Sci. Technol., 35, 2612 (2001) https://doi.org/10.1021/es001764h
  22. K. Kirchner, S. Wagner, and H. J. Rehm, Appl. Microbiol. Biotechnol., 45, 415 (1996) https://doi.org/10.1007/s002530050706
  23. X. Zhu, M. T. Suidan, and C. Alonso, Water Sci. Technol., 43, 285 (2001)
  24. R. M. M. Diks and S. P. P. Ottengraf, Bioproc. Eng., 6, 93 (1991) https://doi.org/10.1007/BF00369061
  25. N. Y. Fortin and M. A. Deshusses, Environ. Sci. Technol., 33, 2980 (1999) https://doi.org/10.1021/es981337s
  26. F. J. Weber and S. Hartmans, Appl. Microbiol. Biotechnol., 43, 365 (1995) https://doi.org/10.1007/BF00172840
  27. M. S. Chou and F. J. Wu, J. Air & Waste Manage. Assoc., 49, 386 (1999) https://doi.org/10.1080/10473289.1999.10463817
  28. H. H. J. Cox and M. A. Deshusses, Biotechnol. Bioeng., 62, 216 (1999) https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<216::AID-BIT12>3.0.CO;2-4
  29. C. Lu, W. Chu, and M. Lin, J. Air & Waste Manage. Assoc., 50, 411 (2000) https://doi.org/10.1080/10473289.2000.10464021
  30. S. J. Pirt, Principles of microbe and cell cultivation, John Wiley & Sons (1975)
  31. P. Holubar, C. Andorfer, and R. Braun, Appl. Microbiol. Biotech., 51, 536 (1999) https://doi.org/10.1007/s002530051430
  32. F. J. Weber and S. Hartmans, Biotechnol. Bioeng., 50, 91 (1996) https://doi.org/10.1002/(SICI)1097-0290(19960405)50:1<91::AID-BIT10>3.0.CO;2-A
  33. Y. S. Won, T. J. Lee, Y. P. Wu, and M. A. Deshusses, J. Ind. Eng. Chem., 10, 60 (2004) https://doi.org/10.1021/ie50097a025
  34. S. M. Wubker and C. G. Friedrich, Appl. Microbiol. Biotechnol., 46, 475 (1996) https://doi.org/10.1007/s002530050847
  35. S. M. Wubker, A. Laurenzis, U. Werner, and C. G. Friedrich, Biotechnol. Bioeng., 55, 686 (1997) https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<686::AID-BIT10>3.0.CO;2-A
  36. P. Schonduve, M. Sara, and A. Friedl, Appl. Microbiol. Biotechnol., 45, 286 (1996) https://doi.org/10.1007/s002530050685
  37. H. H. J. Cox and M. A. Deshusses, Environ. Sci. Technol., 26, 3069 (2002)
  38. D. Hekmat, A. Linn, M. Stephan, and D. Vortmeyer, Appl. Microbiol. Biotechnol., 48, 129 (1997) https://doi.org/10.1007/s002530051027
  39. D. S. Choi, J. S. Devinny, and M. A. Deshusses, J. Environ. Eng., March, 322 (2004)
  40. A. R. Pedersen and E. Arvin, Wat. Sci. Tech., 31, 1963 (1997)
  41. X. Zhu, C. Alonso, and M. T. Suidan, Wat. Sci. Tech., 38, 315 (1998)
  42. W. J. H. Okkerse, S. P. P. Ottengraf, R. M. M. Diks, B. Osinga-Kuipers, and P. Jacobs, Bioproc. Eng., 20, 49 (1999) https://doi.org/10.1007/s004490050559
  43. J. Schindler and A. Friedl, Appl. Microbiol. Biotechnol., 44, 230 (1995) https://doi.org/10.1007/BF00164507
  44. M. A. Deshusses and G. Hamer, Bioproc. Eng., 9, 141 (1993) https://doi.org/10.1007/BF00389921
  45. M. A. Deshusses, C. T. Johnson, and G. Leson J. Air & Waste Manage. Assoc., 49, 973 (1999) https://doi.org/10.1080/10473289.1999.10463869
  46. H. H. J. Cox and M. A. Deshusses, Chem. Eng. J., 3901, 1 (2001)
  47. N. Y. Fortin, M. Morales, Y. Nakagawa, D. D. Focht, and M. A. Deshusses, Environmental Microbiology, 3, 407 (2001) https://doi.org/10.1046/j.1462-2920.2001.00206.x
  48. M. A. Deshusses and H. H. J. Cox, Environ. Progr., 18, 188 (1999) https://doi.org/10.1002/ep.670180315
  49. M. A. Deshusses and T. S. Webster, J. Air & Waste Manage. Assoc., 50, 1947 (2000) https://doi.org/10.1080/10473289.2000.10464220
  50. D. Gabriel and M. A. Deshusses, Proc. Natl. Acad Sci., 100, 6308 (2003)
  51. L. Zuber, J. J. Dunn, and M. A. Deshusses, J. Air & Waste Manage. Assoc., 47, 969 (1997) https://doi.org/10.1080/10473289.1997.10464047
  52. R. M. M. Diks, Ph. D. Dissertation, Eindhoven University of Technology, Netherlands (1999)