Cretaceous and Tertiary paleostress from healed microcracks and fluid inclusions of granites in Masan and Yangsan areas

마산 및 양산 일대의 백악기 화강암류의 아문 미세균열과 유체포유물 연구를 통한 백악기 및 신생대 고응력장 분석

Jang, Bo-An;Jeong, Hae-Sik
장보안;정해식

  • Published : 20050300

Abstract

Paleostress field during the late Cretaceous to early Tertiary in the Gyeongsang Basin was interpreted from the healed microcracks and the secondary fluid inclusions of the Cretaceous Bulgugsa granites in Masan, Jinhae, Gupo and Yangsan areas. The preferred orientations of healed microcracks in the Masan and Jinhae granites are WNW and show NE in the Gupo and Yangsan granites. It was also estimated that the healed microcracks in Masan, Jinhae, Kupo and Yangsan granites were formed during 87~78 Ma, 64~62 Ma, 62~59 Ma and 64~59 Ma, respectively, which were determined by correlating its cooling histories and trapping temperature of fluid inclusions. These results indicate that the maximum horizontal paleostress in the Gyeongsang Basin was WNW direction in the late Cretaceous and might be rotated to NE direction rapidly in about 62 Ma.

마산, 진해, 구포 및 양산 일대의 경상분지 남동부에 광범위하게 분포하고 있는 불국사관입암군에 내재된 아문 미세균열 및 유체포유물을 이용하여 백악기 말에서 신생대 제3기 초에 경상분지에 작용한 고응력장을 해석하였다. 마산 및 진해 지역에 분포하는 화강암내의 아문 미세균열은 서북서 방향이 우세한 반면에 구포 및 양산 지역 화강암의 아문 미세균열은 북동 방향이 우세하다. 또한 각 화강암체의 냉각사와 유체포유물에서 측정된 온도를 비교한 결과 아문 미세균열의 생성온도는 마산, 진해, 구포 및 양산화강암에서 각각 87~78 Ma, 64~62 Ma, 62~59 Ma 및 64~59 Ma로 평가되었다. 이들 결과를 종합하여 고응력장을 복원하면 경상분지에는 백악기 말에 서북서 방향의 최대 수평 주응력이 작용하였으며 신생대 제3기 초에 이르러 북동방향으로 회전하였고, 그 시기는 약 62 Ma로 추정된다.

Keywords

References

  1. 박상욱, 1994, 경상분지 남동부의 화강암체내에 발달한 미세 균열에 대한 연구. 강원대학교 석사학위논문, 79 p
  2. 원종관, 1968, 경상분지에서의 백악기 화성활동에 관한 연구 (I). 지질학회지, 4, 215-236
  3. 이기화, 1985, 양산단층의 활성문제에 관하여. 지질학회지, 21, 38-44
  4. 이상만, 김상욱, 진명식, 1987, 남한의 백악기-제3기 화성활동과 지구조적 의의. 지질학회지, 23, 338-359
  5. 이융희, 손문, 류충렬, 김인수, 최위찬, 2002, 울산단층대를 따라 출현하는 제4기 단층: 개곡단층, 활성리 단층, 진티단층. 한국지구과학회 2002년도 춘계학술발표회(초록), 부산대학교, 2월 22-23일, 36 p
  6. 이준동, 김인수, 윤선, 상기남, 김영화, 1993, 언양지역을 중심으로 한 양산단층에 관한 연구: 특히 파쇄작용과 자기 비등방성 고찰을 중심으로. 지질학회지, 29, 128-144
  7. 장기홍, 1977, 경상분지 상부 중생계의 층서퇴적 및 지구조. 지질학회지, 13, 76-90
  8. 장보안, 김정애, 1996, 월악산-속리산 일대의 화강암체내에 분포하는 아문 미세균열 및 유체포유물에 의한 중생대 백악기 고응력장. 지질학회지, 32, 291-301
  9. 장천중, 장태우, 1998, 고응력 분석을 통한 양산단층의 구조운동사. 지질공학, 8, 35-49
  10. 정해식, 장보안, 2004, 소백산 육괴 동북부 영주 화강암 내의 아문 미세균열 및 유체포유물을 이용한 중생대 고응력장 연구. 지질학회지, 40, 179-190
  11. 황재하, 1994, 백악기초 이후 한반도 남동부에 작용한 고응력 복원. 지질학회지, 30, 27-34
  12. Brown, P.E. and Lamb, W.M., 1989, P-V-T properties of fluids in the implications of fluid inclusion studies, Geochim. Cosmochim. Acta, 53, 1209-1221 https://doi.org/10.1016/0016-7037(89)90057-4
  13. Celaya, M. and McCabe, R., 1987, Kinematic model for the opening of the Sea of Japan and the bending of the Japanese islands. Geology, 15, 53-57 https://doi.org/10.1130/0091-7613(1987)15<53:KMFTOO>2.0.CO;2
  14. Choi, P.Y., Kwon, S.K., Hwang, J.H., Lee, S.R. and An, G.O., 2001, Paleostress analysis of th Pohang - Ulsan area, southeast Korea: Tectonic sequence and timing of block rotation. Geosciences Journal, 5, 1-18 https://doi.org/10.1007/BF02910169
  15. Chough, S.K. and Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea(Sea of Japan). Geology, 15, 45-48 https://doi.org/10.1130/0091-7613(1987)15<45:THOUBM>2.0.CO;2
  16. Ingerson, E. 1947, Liquid inclusions in geologic thermometry. American Mineralogist, 32, 375-388
  17. Jang, B.A., 1991, Numerical modeling of healed crack orientations in granite. Journal of Geological Society of Korea, 27, 319-329
  18. Jang, B.A., 1992, Characteristics of healed microcracks in granite based on numerical modeling. Journal of Geological Society of Korea, 28, 458-470
  19. Jang, B.A. and Wang, H.F., 1991, Micromechanical modeling of healed microcrack orientations as a paleostress indicator: Application to Precambrian granite from Illinois and Wisconsin. Journal of Geophysical Research, 96, 19655- 19664 https://doi.org/10.1029/91JB01938
  20. Jang, B.A., Wang, H.F., Ren, X. and Kowallis, B.J., 1989, Precambrian paleostress from microcracks and fluid inclusions in the Wolf River batholith of central Wisconsin. Geological Society of America Bulletin, 101, 1457-1464 https://doi.org/10.1130/0016-7606(1989)101<1457:PPFMAF>2.3.CO;2
  21. Knapp, R.B. and Knight, J., 1977, Differential thermal expansion of pore fluids: Fracture propagation and microearthquake production in hot pluton environments. Journal of Geophysical Research, 82, 2515-2522 https://doi.org/10.1029/JB082i017p02515
  22. Kowallis, B.J., Wang, H.F. and Jang, B.A., 1987, Healed microcrack orientations in granite from Illinois borehole UPH-3 and their relationship to the rock's stress history. Tectonophysics, 135, 297-306 https://doi.org/10.1016/0040-1951(87)90114-4
  23. Kranz, R.L., 1983, Microcracks in rocks: A review. Tectonophysics, 100, 449-480 https://doi.org/10.1016/0040-1951(83)90198-1
  24. Laubach, S.E., 1989, Paleostress directions from the preferred orientation of fluid-inclusion planes(healed microfractures) in sandstone, East Texas basin, U.S.A. Journal of Structural Geology, 11, 603-611 https://doi.org/10.1016/0191-8141(89)90091-6
  25. Lee, J.I., 1994, Major element geochemistry of the shallow- depth emplaced granitic rocks, southern part of the Kyeongsang Basin, Korea. Journal of Geological Society of Korea, 30, 482-496
  26. Lee, J.I., 1997, Trace and rare earth element geochemistry of granitic rocks, southern part of the Kyongsang Basin, Korea. Geosciences Journal, 1, 167-178 https://doi.org/10.1007/BF02910224
  27. Lee, J.I., Kagami, H. and Nagao, K., 1995, Rb-Sr and K-Ar age determinations of the granitic rocks in the southern part of the Kyoungsang basin, Korea: implication of cooling history and evolution of granitic magmatism during late Cretaceous. Geochemical Journal, 29, 363-376 https://doi.org/10.2343/geochemj.29.363
  28. Lespinasse, M. and Pêcher, A., 1986, Microfracturing and regional stress field: A study of the preferred orientations of fluid-inclusion planes in a granite from the Massif Central, France. Journal of Structural Geology, 8, 169-180 https://doi.org/10.1016/0191-8141(86)90107-0
  29. Mawer, C.K. and Williams, P.F., 1985, Crystalline rocks as possible paleoseismicity indicators. Geology, 13, 100-102 https://doi.org/10.1130/0091-7613(1985)13<100:CRAPPI>2.0.CO;2
  30. Pêcher, A., Lespinasse, M. and Leroy, J., 1985, Relations between fluid inclusion trails and regional stress field: A tool for fluid chronology - an example of an intragranitic uranium ore deposit(northwest Massif Central, France). Lithos, 18, 229-237 https://doi.org/10.1016/0024-4937(85)90027-1
  31. Plumb, R., Engelder, T. and Yale, D. 1984, Near-surface in situ stress: 3. Correlation with microcrack fabric within the New Hampshire granite. Journal of Geophysical Research, 89, 9350-9364 https://doi.org/10.1029/JB089iB11p09350
  32. Potter, R.W., II, 1977, Pressure corrections for fluid-inclusion homogenization temperature based on the volumetric properties of the system NaCl-$H_2O$. Journal of Research of the U. S. Geological Survey, 5, 603-607
  33. Ren, X., Kowallis, B.J. and Best, M.G., 1989, Paleostress history of the Basin and Range province in western Utah and eastern Nevada from healed microfracture orientations in granites. Geology, 17, 487-490 https://doi.org/10.1130/0091-7613(1989)017<0487:PHOTBA>2.3.CO;2
  34. Roedder, E., 1984, Fluid inclusions : Reviews in mineralogy. Volume 12, Mineralogical Society of America, Washington, D.C., 644 p
  35. Shelton, K.L. and Orville, P.M., 1980, Formation of synthetic fluid inclusions in natural quartz. American Mineralogist, 65, 1233-1236
  36. Smith, D.L. and Evans, B., 1984, Diffusional crack healing in quartz. Journal of Geophysical Research, 89, 4125-4135 https://doi.org/10.1029/JB089iB06p04125
  37. Tuttle, O.F., 1949, Structural petrology of planes of liquid inclusions. Journal of Geology, 57, 331-356 https://doi.org/10.1086/625629