Characterization of an Abiotic Stress-inducible Dehydrin Gene, OsDhn1, in Rice (Oryza sativa L.)

  • Lee, Sang-Choon (Department of Life Science, Sogang University) ;
  • Lee, Mi-Yeon (Department of Life Science, Sogang University) ;
  • Kim, Soo-Jin (Department of Life Science, Sogang University) ;
  • Jun, Sung-Hoon (Department of Life Science, Pohang University of Science and Technology) ;
  • An, Gynheung (Department of Life Science, Pohang University of Science and Technology) ;
  • Kim, Seong-Ryong (Department of Life Science, Sogang University)
  • Received : 2004.10.12
  • Accepted : 2004.11.09
  • Published : 2005.04.30

Abstract

A full-length 1.1 kb cDNA, designated Oryza sativa Dehydrin 1 (OsDhn1), was isolated from the seed coat of rice. The deduced protein is hydrophilic and has three K-type and one S-type motifs (SK3-type), indicating that OsDhn1 belongs to the acidic dehydrin family, which includes wheat WCOR410 and Arabidopsis COR47. Expression of OsDhn1 was strongly induced by low temperature as well as by drought. Induction of OsDhn1 by cold stress was clearcut in the roots of seedlings and the epidermis of palea and lemma. OsDhn1 was also up-regulated in UBI::CBF1/DREB1b transgenic plants indicating that it is regulated by the CBF/DREB stress signaling pathway.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Aguan, K., Sugawara, K., Suzuki, N., and Kusano, T. (1991) Isolation of genes for low-temperature-induced proteins in rice by a simple subtractive method. Plant Cell Physiol. 32, 1285-1289
  2. Allagulova, Ch. R., Gimalov, F. R., Shakirova, F. M., and Vakhitov, V. A. (2003) The plant dehydrins: Structure and putative functions. Biochemistry (Mosc) 68, 945-951 https://doi.org/10.1023/A:1026077825584
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  4. Artus, N. N., Uemura, M., Steponkus, P. L., Gilmour, S. J., Lin, C., et al. (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA 93, 13404-13409
  5. Bray, E. A. (1993) Molecular responses to water deficit. Plant Physiol. 103, 1035-1040
  6. Chen, D. H. and Roland, P. C. (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol. Biol. Rep. 17, 53-57 https://doi.org/10.1023/A:1007585532036
  7. Cheng, Z., Targolli, J., Huang, X., and Wu, R. (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol. Breed. 10, 71-82 https://doi.org/10.1023/A:1020329401191
  8. Close, T. J. (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97, 795-803 https://doi.org/10.1111/j.1399-3054.1996.tb00546.x
  9. Close, T. J. (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100, 291-296 https://doi.org/10.1111/j.1399-3054.1997.tb04785.x
  10. Danyluk, J., Houde, M., Rassart, É., and Sarhan, F. (1994) Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerance gramineae species. FEBS Lett. 344, 20-24 https://doi.org/10.1016/0014-5793(94)00353-X
  11. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., et al. (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10, 623-638 https://doi.org/10.1105/tpc.10.4.623
  12. Dure, L. III. (1993) Structural motif in Lea proteins; in Plant Response to Cellular Dehydration during Environmental Stress. Current Topics in Plant Physiology, Close, T. J. and Bray, E. A. (eds.), Vol. 10, pp. 91-103, American Society of Plant Physiologists, Rockville, MD
  13. Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13 https://doi.org/10.1016/0003-2697(83)90418-9
  14. Fowler, S. and Thomashow, M. F. (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14,1675-1690 https://doi.org/10.1105/tpc.003483
  15. Hara, M., Terashima, S., Fukaya, T., and Kuboi, T. (2003) Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217, 290-298
  16. Hong, S.-T., Chung, J.-E., An, G., and Kim, S.-R. (1998) Analysis of 176 expressed sequence tags generated from cDNA cones of hot pepper by single-pass sequencing. J. Plant Biol. 41, 116-124 https://doi.org/10.1007/BF03030398
  17. Hsieh, T. H., Lee, J. T., Charng, Y. Y., and Chan, M. T. (2002a) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618-626 https://doi.org/10.1104/pp.006783
  18. Hsieh, T. H., Lee, J. T., Yang, P. T., Chiu, L. H., Charng, T. Y., et al. (2002b) Heterology expression of the Arabidopsis Crepeat/ Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086-1094 https://doi.org/10.1104/pp.003442
  19. Ingram, J. and Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 277-403
  20. Jang, S., Lee, B., Kim, C., Kim, S. J., Yim, J., et al. (2003) The OsFOR1 gene encodes a polygalacturonase-inhibiting protein (PGIP) that regulates floral organ number in rice. Plant Mol. Biol. 53, 357-369 https://doi.org/10.1023/B:PLAN.0000006940.89955.f1
  21. Kim, J.-Y., Lee, S.-C., Jung, K.-H.,. An, G., and Kim, S.-R. (2004) Characterization of a cold responsive gene, OsPTR1, isolated from the screening of ${\beta}$-glucuronidase (GUS)-gene trapped rice. J. Plant Biol. 47, 133-141 https://doi.org/10.1007/BF03030644
  22. Kiyosue, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol. 35, 225- 231
  23. Koag, M. C., Fenton, R. D., Wilkens, S., and Close, T. J. (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol. 131, 309-316 https://doi.org/10.1104/pp.011171
  24. Kong, J., Gong, J. M., Zhang, Z. G., Zhang, J. S., and Chen, S. Y. (2003) A new AOX homologous gene OsIM1 from rice (Oryza sativa L.) with an alternative splicing mechanism under salt stress. Theor. Appl. Genet. 107, 326-331 https://doi.org/10.1007/s00122-003-1250-z
  25. Kusano, T., Aguan, K., Abe, M., and Sugawara, K. (1992) Nucleotide sequence of a rice rab16 homologue gene. Plant Mol. Biol. 18, 127-129 https://doi.org/10.1007/BF00018464
  26. Lee, S. C., Huh, K. W., An, K., An, G., and Kim, S. R. (2004) Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol. Cells 18, 107-114
  27. Moons, A., Bauw, G., Prinsen, E., Van Montagu, M., and Van Der Straeten, D. (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol. 107, 177-186 https://doi.org/10.1104/pp.107.1.177
  28. Mundy, J. and Chua, N. H. (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7, 2279-2286
  29. Nicholas, K. B. and Nicholas, H. B. (1997) GeneDoc: analysis and visualization of genetic variation. Http://www.cris.com/~ ketchup/genedoc.html
  30. Nylander, M., Svensson, J., Palva, E. T., and Welin, B. V. (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45, 263-279 https://doi.org/10.1023/A:1006469128280
  31. Ono, A., Izawa, T., Chua, N. H., and Shimamoto, K. (1996) The rab16B promoter of rice contains two distinct abscisic acidresponsive elements. Plant Physiol. 112, 483-491 https://doi.org/10.1104/pp.112.2.483
  32. Takahashi, R., Joshee, N., and Kitagawa, Y. (1994) Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. Plant Mol. Biol. 26, 339-352 https://doi.org/10.1007/BF00039544
  33. Thomashow, M. F. (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599 https://doi.org/10.1146/annurev.arplant.50.1.571
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  35. Wang, C. S. and Vodkin, L. O. (1994) Extraction of RNA from tissues containing high levels of procyanidins that bind RNA. Plant Mol. Biol. 12, 132-145 https://doi.org/10.1007/BF02668374
  36. Welin, B. V., Olson, A., and Palva, E. T. (1995) Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Mol. Biol. 29, 391-395 https://doi.org/10.1007/BF00043662
  37. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T., et al. (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110, 249-257
  38. Yamaguchi-Shinozaki, K., Mundy, J., and Chua, N. H. (1990) Four tightly linked rab genes are differentially expressed in rice. Plant Mol. Biol. 14, 29-39 https://doi.org/10.1007/BF00015652
  39. Yu, J., Hu, S., Wang, J., Wong, G. K., Li, S., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92 https://doi.org/10.1126/science.1068037
  40. Zhang, X., Fowler, S. G., Cheng, H., Lou, Y., Rhee, S. Y., et al. (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39, 905-919 https://doi.org/10.1111/j.1365-313X.2004.02176.x
  41. Zhu, B., Choi, D.-W., Fenton, R., and Close, T. J. (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264, 145-153 https://doi.org/10.1007/s004380000299