Effect of Cosurfactant on Intermediate Phase Formation in Systems Containing Alkyl Ethoxylate Nonionic Surfactant, Water and Lubricant

Alkyl Ethoxylate 비이온 계면활성제, 물과 윤활유를 포함한 시스템에서 보조계면활성제가 중간상 생성에 미치는 영향에 관한 연구

  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 임종주 (동국대학교 공과대학 생명.화학공학과)
  • Received : 2005.06.07
  • Accepted : 2005.09.01
  • Published : 2005.12.10

Abstract

It has been found that the addition of cosurfactant is necessary in order to expand three phase region containing middle phase microemulsion in ternary systems containing alkyl ethoxylate (AEO) nonionic surfactant, commercial lubricant and water. Phase behavior in the surfactant systems with addition of cosurfactant over a temperature range of 30 to $60^{\circ}C$ showed different trends depending on surfactant, temperature and chain length of alcohol added. For the $C_{12}E_4$ system, addition of n-pentanol and n-hexanol both produced a three phase region over a wide range of temperatures but the middle-phase formed was found to be a $L_3$ or D' phase which would not facilitate solubilization of high molecular weight lubricants. On the other hand, for the $C_{12}E_5$ system, the middle-phase microemulsion was found to be formed with addition of a rather long-chain alcohol such as n-hexanol, n-heptanol, n-octanol, or n-nonanol. The results shown with the addition of cosurfactant was understood in connection with interfacial tension measurements and composition analysis. The inability of the hydrocarbon region of the surfactant films to incorporate the large lubricant molecules and high solubility of a hydrophobic surfactant are thought to be the chief reasons for poor solubilization with D' phase.

Alkyl ethoxylate 비이온 계면활성제, 산업용 윤활유, 물로 이루어진 3성분계에 대하여 $30{\sim}60^{\circ}C$의 온도 범위에서 상평형 실험을 수행한 결과, 세정력에 중요한 영향을 끼치는 가운데 상의(middle-phase) 마이크로에멀젼(${\mu}E$) D상은 매우 제한된 조건 하에서만 생성되며, 따라서 D상이 보다 넓은 온도 영역에서 형성되기 위해서는 보조계면활성제 첨가가 필수적임을 알 수 있었다. 비이온 계면활성제 $C_{12}E_4$ 시스템에 n-펜탄올과 n-헥산올을 보조계면활성제로 각각 첨가함에 따라 3상이 형성되는 온도는 A/S 증가에 따라 감소하였으나 3상 영역에서 생성된 가운데 상은 많은 양의 물을 함유한 $D^{\prime}(L_3)$상이었다. 한편 $C_{12}E_5$ 계의 경우에는 보조계면활성제로 n-펜탄올을 첨가한 경우에는 D'상이 형성되었으며, 반면에 n-헵탄올, 옥탄올, 노난올 등을 첨가할 경우에는 D상이 형성되었다. 한편 보조계면활성제로 n-헥산올을 첨가한 경우에는 $30{\sim}40^{\circ}C$의 온도 범위에서는 D'상을 형성하며, $45{\sim}60^{\circ}C$의 온도 범위에서는 D상이 형성되었다. 두 비이온 계면활성제 시스템의 차이는 거대한 윤활유 오일 분자가 계면활성제 필름 지역으로 관통하여 가용화될 수 있는 정도와 계면활성제의 오일 상에 대한 분배에 주로 기인하는 것으로 생각된다.

Keywords

References

  1. W. G. Cutler and E. Kissa, Detergency: Theory and Technology, Surfactant Science Series, 20, 1, Marcel Dekker, New York (1987)
  2. A. M. Schwartz, The Physical Chemistry of Detergency, ed. E. Matijevic, Surface Colloid Sci., Wiley, 195, New York (1972)
  3. C. A. Miller and P. Neogi, Interfacial Phenomena: Equilibrium and Dynamic Effects, Surfactant Science Series, 17, 137, Marcel Dekker, New York (1985)
  4. K. H. Raney, W. J. Benton, and C. A. Miller, J. Colloid interface Sci., 110, 363 (1987) https://doi.org/10.1016/0021-9797(86)90390-5
  5. K. H. Raney, W. J. Benton, and C. A. Miller, J. Colloid Interface Sci., 117, 282 (1987) https://doi.org/10.1016/0021-9797(87)90192-5
  6. K. H. Raney and C. A. Miller, J. Colloid interface Sci., 119, 539 (1987) https://doi.org/10.1016/0021-9797(87)90301-8
  7. F. Mori, J. C. Lim, O. G. Raney, C. M. Elsik, and C. A. Miller, Colloid Surf A, 40, 323 (1989) https://doi.org/10.1016/0166-6622(89)80029-0
  8. J. C. Lim, C. A. Miller, and C. H. Yang, Colloid Surf A, 66, 45 (1992) https://doi.org/10.1016/0166-6622(92)80119-M
  9. F. Mori, J. C. Lim, and C. A. Miller, Prog. Colloid Polym. Sci., 82, 114 (1990) https://doi.org/10.1007/BFb0118249
  10. C. A. Miller and K. H. Raney, Colloid Surf. A., 74, 169 (1993) https://doi.org/10.1016/0927-7757(93)80263-E
  11. H. S. Kielman and P. H. F. van Steen, 'Surface Active Agents', Society Chemical Industry, p.191, London (1979)
  12. K. H. Raney and H. Benson, J. Am. Oil Chem. Soc., 67, 722 (1990) https://doi.org/10.1007/BF02540479
  13. H. K. Ko, J. K. Lee, S. J. Park, B. D. Park, J. K. Hong, S. K. Park, and J. C. Lim, Hwahak Gonghak, 40, 316 (2002)
  14. J. C. Lim, J. Korean ind. Eng. Chem., 6, 610 (1995)
  15. J. C. Lim, J. Korean ind. Eng. Chem., 8, 473 (1997)
  16. H. K. Ko, B. D. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 11, 679 (2000)
  17. H. Kunieda, H. Asaoka, and Kozo Shinoda, J. Phys. Chem., 92, 185 (1988) https://doi.org/10.1021/j100312a040
  18. D. J. Mitchell, G. J. T. Tiddy, L. Warring, T. Bostock, and M. P. McDonald, J. Chem. Soc. Faraday Trans., 1, 975 (1983)
  19. P. G. Nilsson and B. Lindman, J. Phys. Chem., 88, 4764 (1984) https://doi.org/10.1021/j150664a063
  20. C. A. Miller and o. Ghosh, Langmuir, 2, 321 (1986) https://doi.org/10.1021/la00069a013
  21. D. Anderson, H. Wennerstroem, and U. Olsson, J. Phys. Chem., 93, 4243 (1989) https://doi.org/10.1021/j100347a067
  22. G. Porte, R. Gomati, O. E. Haitamy, J. Appell, and J. Marignan, J. Phys. Chem., 90, 5746 (1986) https://doi.org/10.1021/j100280a055
  23. A. C. John, H. Uchiyama, K. nakamura, and H. Kunieda, J. Colloid interface Sci., 186, 294 (1997) https://doi.org/10.1006/jcis.1996.4650
  24. B. P. Binks and J. Dong, Colloid Surf A, 132, 289 (1998) https://doi.org/10.1016/S0927-7757(97)00183-0