Effective Strength of Concrete Strut in Strut-Tie Model (I) - Methods for Determining Effective Strength of Concrete Strut -

스트럿-타이 모델에서 콘크리트 스트럿의 유효강도 (I): 결정방법의 소개

Yun, Young-Mook
윤영묵

  • Published : 2005.01.31

Abstract

The strut-tie model approach has proven to be useful in the analysis and design of structural concrete with disturbed region(s). However, to employ the approach the effective strengths of concrete struts required for obtaining the cross-sectional areas of struts and ties and for verifying the geometrical compatibility condition of a selected strut-tie model should be determined accurately. In this study, a literature review of the conventional methods for determining the effective strengths of concrete struts was conducted, and a consistent and general method applicable to any types of two-dimensional structural concrete was proposed. The procedure for applying each method was illustrated through the designs of a reinforced concrete beam and an anchorage zone of post-tensioned concrete. In the companion paper, the validity of the conventional and proposed methods was examined by evaluating the ultimate strength of several reinforced concrete beams tested to failure.

스트럿-타이 모델 방법은 콘크리트 부재의 해석 및 설계에 효과적인 방법으로 알려져 있다. 그러나 스트럿-타이 모델 방법을 콘크리트 부재의 해석 및 실 설계에 적용하기 위해서는 스트럿-타이 모델의 스트럿과 타이의 단면력 결정과 선정한 스트럿-타이 모델의 적합성 판단에 중요한 요소 중의 하나인 콘크리트 스트럿의 유효강도를 정확하게 결정하여야 한다. 본 논문에서는 콘크리트 스트럿의 유효강도 결정방법에 관한 문헌조사를 수행하였으며, 일반적이며 일관성 있는 콘크리트 스트럿의 유효강도 결정방법을 제안하였다. 또한 기존의 전통적인 방법 및 본 연구에서 제안한 방법에 의한 콘크리트 스트럿 유효강도 산정과정을 철근콘크리트 보 및 프리스트레스트 콘크리트 I형보 정착부의 스트럿-타이 모델 설계를 통해 예시하였다. 본 논문의 후속 편에서는 여러 참고문헌 및 본 논문에서 제안한 방법에 의한 콘크리트 스트럿의 유효강도 값을 파괴실험이 이미 수행된 여러 콘크리트 부재의 스트럿-타이 모델 해석에 적용시켜서 이들 방법의 적합성을 평가하였다.

Keywords

References

  1. Alshegeir, A. (1992) Analysis and design of disturbed regions with strut-tie models, Ph.D Dissertation, School of Civil Engineering, Purdue University, Indiana, USA
  2. American Association of State Highway and Transportation Officials(1998) AASHTO LRFD bridge design specifications, 2nd Edition, Washington D.C., USA
  3. American Concrete Institute(2002) Building code requirements for structural concrete (ACI318-02) and commentary (ACI 318R02), Farmington Hills, Michigan, USA
  4. Bergmeister, K., Breen, J.E., and Jirsa, J.O. (1991) Dimensioning of the nodes and development of reinforcement, Structural Concrete, IABSE Colloquium, Stuttgart 1991, Report, International Association for Bridge and Structural Engineering, Zurich, pp. 551-556
  5. Canadian Standards Association (1984) Design of concrete structures for buildings, CAN3-A23.3-M84, Rexdale, Ontario, Canada
  6. Collins, M.P. and Mitchell, D. (1980) Design proposals for shear and torsion, Journal of the Prestressed Concrete Institute, 25(5), 70 pp
  7. Collins, M.P. and Mitchell, D. (1991) Prestressed concrete structures, Prentice Hall, Englewood Cliffs, New Jersey, USA
  8. Comite Euro-International Du Beton (1993) CEB-FIP model code 1990, Thomas Telford Services, Ltd., London, 437pp
  9. MacGregor, J.G. (1988) Reinforced concrete - mechanics and design, Prentice Hall, Englewood Cliffs, New Jersey, USA
  10. MacGregor, J.G. (1997) Reinforced concrete - mechanics and design, 3rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA
  11. Marti, P. (1985) Basic tools of reinforced concrete beam design, Journal of American Concrete Institute, 82(1), pp. 46-56
  12. Nielsen, M.P., Braestrup, MW., Jensen, B.C., and Bach, F. (1978) Concrete plasticity, beam shear - shear in joints - Punching Shear, Special Publication, Danish Society for Structural Science and Engineering, Lyngby, Denmark
  13. Ramirez, J.A. and Breen, J.E. (1983) Proposed design procedure for shear and torsion in reinforced and prestressed concrete, Research Report 248-4F, Center for Transportation Research, University of Texas at Austin, Texas, USA
  14. Schlaich, J., Schaefer, K., and Jennewein, M. (1987) Towards a consistent design of structural concrete, Journal of the Prestressed Concrete Institute, 32(3), pp. 74-151
  15. Thurlimann, B. (1976) Shear strength of reinforced and prestressed concrete - CEB approach, Special Publication 59-6, American Concrete Institute, Detroit, USA
  16. Vecchio, EJ. and Collins, MP. (1982) The response of reinforced concrete to in-plane shear and normal stresses, Publication No. 82-03, Department of Civil Engineering, University of Toronto, Canada