Insulin Cannot Activate Extracellular-signal-related Kinase Due to Inability to Generate Reactive Oxygen Species in SK-N-BE(2) Human Neuroblastoma Cells

  • Received : 2005.06.30
  • Accepted : 2005.07.11
  • Published : 2005.10.31

Abstract

The insulin-mediated Ras/mitogen-activated protein (MAP) kinase cascade was examined in SK-N-BE(2) and PC12 cells, which can and cannot produce reactive oxygen species (ROS), respectively. Tyrosine phosphorylation of the insulin receptor and insulin receptor substrate 1 (IRS-1) was much lower in SK-N-BE(2) cells than in PC12 cells when the cells were treated with insulin. The insulin-mediated interaction of IRS-1 with Grb2 was observed in PC12 but not in SK-N-BE(2) cells. Moreover, the activity of extracellular-signal-related kinase (ERK) was much lower in SK-N-BE(2) than in PC12 cells when the cells were treated with insulin. Application of exogenous $H_2O_2$ caused increased tyrosine phosphorylation and Grb2 binding to IRS-1 in SK-N-BE(2) cells, while exposure to an $H_2O_2$ scavenger (N-acetylcysteine) or to a phophatidylinositol-3 kinase inhibitor (wortmannin), and expression of a dominant negative Rac1, decreased the activation of ERK in insulin-stimulated PC12 cells. These results indicate that the transient increase of ROS is needed to activate ERK in insulin-mediated signaling and that an inability to generate ROS is the reason for the insulin insensitivity of SK-N-BE(2) cells.

Keywords

Acknowledgement

Supported by : Korea Science Foundation

References

  1. Backer, J. M., Myers, M. G. Jr., Sun, X. J., Chin, D. J., Shoelson, S. E., et al. (1993) Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3′-kinase. Formation of binary and ternary signaling complexes in intact cells. J. Biol. Chem. 268, 8204-8212
  2. Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., et al. (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217-221 https://doi.org/10.1074/jbc.272.1.217
  3. Bae, Y. S., Sung, J. Y., Kim, O. S., Kim, Y. J., Hur, K. C., et al. (2000) Platelet-derived growth factor-induced $H_2O_2$ production requires the activation of phosphatidylinositol 3-kinase. J. Biol. Chem. 275, 10527-10531 https://doi.org/10.1074/jbc.275.14.10527
  4. Baltensperger, K., Kozma, L. M., Cherniack, A. D., Klarlund, J. K., Chawla, A., et al. (1993) Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science 260,1950-1952 https://doi.org/10.1126/science.8391166
  5. Banfi, B., Clark, R. A., Steger, K., and Krause, K. (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J. Biol. Chem. 278, 3510-3513 https://doi.org/10.1074/jbc.C200613200
  6. Barbior, B. M. (1999) NADPH oxidase: an update. Blood 93, 1464-1476
  7. Bazenet, C. E., Gelderloos, J. A., and Kazlauskas, A. (1996) Phosphorylation of tyrosine 720 in the platelet-derived growth factor alpha receptor is required for binding of Grb2 and SHP-2 but not for activation of Ras or cell proliferation. Mol. Cell. Biol. 16, 6926-6936
  8. Biedler, J. L., Rofflrt-Tarlov, S., Schachner, M., and Freedman, M. S. (1978) Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38, 3751- 3757
  9. Bokoch, G. M. and Diebold, B. A. (2002) Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100, 2692-2696 https://doi.org/10.1182/blood-2002-04-1149
  10. Buday, L. and Downward, J. (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73, 611-620 https://doi.org/10.1016/0092-8674(93)90146-H
  11. Burdon, R. H. (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18, 775-794 https://doi.org/10.1016/0891-5849(94)00198-S
  12. Claiborne, A., Yeh, J. I., Mallett, T. C., Luba, J., Crane, E. J. 3rd, et al. (1999) Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38, 15407-15416 https://doi.org/10.1021/bi992025k
  13. Czech, M. P., Lawrence, J. C. Jr., and Lynn, W. S. (1974) Evidence for electron transfer reactions involved in the $Cu^{2+}$ - dependent thiol activation of fat cell glucose utilization. J. Biol. Chem. 249, 1001-1006
  14. Dugan, L. L., Creedon, D. J., Johnson, E. M., and Holtzman, D. M. (1997) Rapid suppression of free radical formation by nerve growth factor involves the mitogen-activated protein kinase pathway. Proc. Natl. Acad. Sci. USA 94, 4086-4091
  15. Fantl, W. J., Johnson, D. E., and Williams, L. T. (1993) Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62, 453-481 https://doi.org/10.1146/annurev.bi.62.070193.002321
  16. Finkel, T. (1998) Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248-253 https://doi.org/10.1016/S0955-0674(98)80147-6
  17. Heldin, C. H. (1995) Dimerization of cell surface receptors in signal transduction. Cell 80, 213-223 https://doi.org/10.1016/0092-8674(95)90404-2
  18. Herrlich, P. and Bohmer, F. D. (2000) Redox regulation of signal transduction in mammalian cells. Biochem. Pharmacol. 59, 35-41 https://doi.org/10.1016/S0006-2952(99)00298-1
  19. Hunter, T. (2000) Signaling--2000 and beyond. Cell 100, 113-127 https://doi.org/10.1016/S0092-8674(00)81688-8
  20. Hwang, J. J., Lim, J. H., Kwon, J. H., Lee, K. Y., and Hur, K. C. (1995) Effect of nerve growth factor, insulin, and extracellular matrix proteins on the neurite outgrowth of SK-N-BE(2) human neuroblastoma cells. Mol. Cells 5, 501-507
  21. Imbert, V., Rupec, R. A., Livolsi, A., Pahl, H. L., Traenckner, E. B., et al. (1996) Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell 86, 787-798 https://doi.org/10.1016/S0092-8674(00)80153-1
  22. Jaiswal, R. K., Moodie, S. A., Wolfman, A., and Landreth, G. E. (1994) The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol. Cell. Biol. 14, 6944-6953
  23. Kimura, T., Okajima, F., Sho, K., Kobayashi, I., and Kondo, Y. (1995) Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3′,5′- monophosphate, but by $Ca^{2+}$ signaling followed by phospholipase- A2 activation and potentiated by an adenosine derivative. Endocrinology 136, 116-123 https://doi.org/10.1210/en.136.1.116
  24. Krieger-Brauer, H. I. and Kather, H. (1995) Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPHdependent $H_2O_2$ generation in 3T3 L1-cells. Biochem. J. 307, 549-556
  25. Krieger-Brauer, H. I., Medda, P. K., and Kather, H. (1997) Insulin- induced activation of NADPH-dependent $H_2O_2$ generation in human adipocyte plasma membranes is mediated by Galphai2. J. Biol. Chem. 272, 10135-10143 https://doi.org/10.1074/jbc.272.15.10135
  26. Kuhne, M. R., Pawson, T., Lienhard, G. E., and Feng, G. S. (1993) The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J. Biol. Chem. 268, 11479-11481
  27. Kypta, R. M., Goldberg, Y., Ulug, E. T., and Courtneidge, S. A. (1990) Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62, 481-492 https://doi.org/10.1016/0092-8674(90)90013-5
  28. Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994) Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411-414 https://doi.org/10.1038/369411a0
  29. Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., et al. (1993) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature 363, 85-88 https://doi.org/10.1038/363085a0
  30. Lo, Y. Y. and Cruz, T. F. (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J. Biol. Chem. 270, 11727-11730 https://doi.org/10.1074/jbc.270.20.11727
  31. Macdonald, S. G., Crews, C. M., Wu, L., Driller, J., Clark, R., et al. (1993) Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro. Mol. Cell. Biol. 13, 6615-6620
  32. Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001a) Insulin-stimulated hydrogen peroxide reversibly inhibits protein- tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276, 21938-21942 https://doi.org/10.1074/jbc.C100109200
  33. Mahadev, K., Wu, X., Zilbering, A., Zhu, L., Lawrence, J. T., et al. (2001b) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J. Biol. Chem. 276, 48662-48669 https://doi.org/10.1074/jbc.M105061200
  34. Meier, B., Cross, A. R., Hancock, J. T., Kamp, F., and Jones, O. T. G. (1991) Identification of a superoxide generating NADPH-oxidase system in human fibroblasts. Biochem. J. 275, 241-245
  35. Ohba, M., Shibanuma, M., Kuroki, T., and Nose, K. (1994) Production of hydrogen peroxide by transforming growth factorbeta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126, 1079-1088 https://doi.org/10.1083/jcb.126.4.1079
  36. Patterson, C., Ruef, J., Madamanchi, N. R., Barry-Lane, P., Hu, Z., et al. (1999) Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that $p47^{phox}$ may participate in forming this oxidase in vitro and in vivo. J. Biol. Chem. 274, 19814-19822 https://doi.org/10.1074/jbc.274.28.19814
  37. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., and Bowtell, D. (1993) The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 363, 83-85 https://doi.org/10.1038/363083a0
  38. Sattler, M., Winkler, T., Verma, S., Byrne, C. H., Shrikhande, G., et al. (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93, 2928-293
  39. Seo, J. H., Ahn, Y., Lee, S., Yeo, C. Y., and Hur, K. C. (2005) The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol. Biol. Cell 16, 348-357 https://doi.org/10.1091/mbc.E04-05-0369
  40. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., et al. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767-778 https://doi.org/10.1016/0092-8674(93)90404-E
  41. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995) Requirement for generation of $H_2O_2$ for plateletderived growth factor signal transduction. Science 270, 296-299 https://doi.org/10.1126/science.270.5234.296
  42. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Sulciner, D. J., Gutkind, J. S., et al. (1996) Regulation of reactive-oxygenspecies generation in fibroblasts by Rac1. Biochem. J. 318, 379-382
  43. Szatrowski, T. P. and Nathan, C. F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794-798
  44. White, M. F. (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182, 3-11 https://doi.org/10.1023/A:1006806722619
  45. White, M. F. and Kahn, C. R. (1994) The insulin signaling system. J. Biol. Chem. 269, 1-4
  46. Zhang, Z. Y. (1998) Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33, 1-52 https://doi.org/10.1080/10409239891204161