A Study on Electromechanical Carbon Nanotube Memory Devices

Kang, Jeong-Won;Hwang, Ho-Jung

  • Published : 20050400

Abstract

Electromechanical operations of carbon-nanotube (CNT) bridge memory device were investigated by using atomistic simulations based on empirical potentials. The nanotube-bridge memory device was operated by the electrostatic and the van der Waals forces acting on the nanotube-bridge. For the CNT bridge memory device, the van der Waals interactions between the CNT bridge and the oxide were very important. As the distance between the CNT bridge and the oxide decreased and the van der Waals interaction energy increased, the pull-in bias of the CNT-bridge decreased and the nonvolatility of the nanotube-bridge memory device increased, while the pull-out voltages increased. When the materials composed of the oxide film are different, since the van der Waals interactions must be also different, the oxide materials must be carefully selected for the CNT-bridge memory device to work as a nonvolatile memory.

Keywords

References

  1. C. Hierold, J. Micromech. Microeng. 14, S1 (2004) https://doi.org/10.1088/0960-1317/14/1/301
  2. A. N. Cleland, Foundations of Nanomechanics, (Springer-Verlag, Berlin, 2003)
  3. S. Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  4. Handbook of Nanoscience, Engineering and Technology edited by W. A. Goddard, D. W. Brenner, S. E. Lyshevski and G. J. Iagrate, (CRC Press, New York 2003)
  5. D. Dian, G. J. Wagner, W. K. Liu, M-Y. Yu and R. S. Ruo , Appl. Mech. Rev. 55, 495 (2002) https://doi.org/10.1115/1.1490129
  6. Q. Zheng and Q. Jiang, Phys. Rev. Lett. 88, 045503 (2002) https://doi.org/10.1103/PhysRevLett.88.045503
  7. Q. Zheng, J. S. Liu and Q. Jiang, Phys. Rev. B 65, 245409 (2002) https://doi.org/10.1103/PhysRevB.65.245409
  8. Y. Zhao, C-C. Ma, G. H. Chen and Q. Jiang, Phys. Rev. Lett. 91, 175504 (2003) https://doi.org/10.1103/PhysRevLett.91.175504
  9. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas and D. S. Galvao, Phys. Rev. Lett. 90, 055504 (2003) https://doi.org/10.1103/PhysRevLett.90.055504
  10. S. B. Legoas, V. R. Coluci, S. F. Braga, P. Z. Coura, S. O. Dantas and D. S. Galvao, Nanotechnology 15, S184 (2004) https://doi.org/10.1088/0957-4484/15/4/012
  11. J. W. Kang and H. J. Hwang, J. Appl. Phys. 96, 3900 (2004) https://doi.org/10.1063/1.1785837
  12. W. Y. Choi, J. W. Kang and H. J. Hwang, Physica E 23, 125 (2004)
  13. H. J. Hwang, K. R. Byun and J. W. Kang, Physica E 23, 208 (2004) https://doi.org/10.1016/j.physe.2004.03.006
  14. J. W. Kang and H. J. Hwang, Physica E 23, 36 (2004) https://doi.org/10.1016/j.physe.2003.11.271
  15. J. W. Kang and H. J. Hwang, Jpn. J. Appl. Phys. 73, 4447 (2004)
  16. J. W. Kang and H. J. Hwang, J. Phys. Soc. Jpn. 73, 1077 (2004) https://doi.org/10.1143/JPSJ.73.1077
  17. J. W. Kang, Y. W. Choi and H. J. Hwang, J. Comp. Theor. Nanosci. 1, 199 (2004) https://doi.org/10.1166/jctn.2004.017
  18. P. Kim and C. M. Lieber, Science 286, 2148 (1999) https://doi.org/10.1126/science.286.5447.2148
  19. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C-L. Cheung and C. M. Liever, Science 289, 94 (2000) https://doi.org/10.1126/science.289.5476.94
  20. P. G. Collins, K. B. Bradley, M. Ishigamo and A. Zettl, Science 287, 1801 (2000) https://doi.org/10.1126/science.287.5459.1801
  21. M. Dequesnes, S. V. Rotkin and N. R. Aluru, Nanotechnology 13, 120 (2002) https://doi.org/10.1088/0957-4484/13/1/325
  22. J. M. Kinaret, T. Nord and S. Viefers, Appl. Phys. Lett. 82, 1287 (2003) https://doi.org/10.1063/1.1557324
  23. C. Ke and H. D. Espinosa, Appl. Phys. Lett. 85, 681 (2004) https://doi.org/10.1063/1.1767606
  24. L. M. Jonsson, T. Nord, J. M. Kinaret and S. Viefers, J. Appl. Phys. 96, 629 (2004) https://doi.org/10.1063/1.1756689
  25. L. M. Jonsson, S. Axelsson, T. Nord, S. Viefers and J. M. Kinaret, Nanotechnology 15, 1497 (2004) https://doi.org/10.1088/0957-4484/15/11/022
  26. S. W. Lee, D. S. Lee, R. E. Morjan, S. H. Jhang, M. Sveningsson, O. A. Nerushev, Y. W. Park and E. E. B. Campbell, Nano Lett. 4, 2027 (2004) https://doi.org/10.1021/nl049053v
  27. B. M. Segal, D. K. Block and R. Thomas, Electromechanical memory array using nanotube ribbons and method for making same, US Patent submission number 2004-850100 (May 20, 2004) (http://www.nantero.com)
  28. S. Sapmaz, Y. M. Blanter, L. Gurevich and H. S. J. van der Zant, Phys. Rev. B 67, 235414 (2003) https://doi.org/10.1103/PhysRevB.67.235414
  29. V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias and P. L. McEuen, Nature 431, 284 (2004) https://doi.org/10.1038/nature02905
  30. J. Tersoff, Phys. Rev. B 38, 9902 (1988) https://doi.org/10.1103/PhysRevB.38.9902
  31. J. Tersoff, Phys. Rev. B 39, 5566 (1989) https://doi.org/10.1103/PhysRevB.39.5566
  32. D. W. Brenner, Phys. Rev. B 42, 9458 (1990) https://doi.org/10.1103/PhysRevB.42.9458
  33. S. Dorfman, K. C. Mundim, D. Fuks, A. Berner, D. E. Ellis and J. Van Humbeeck, Mater. Sci. Eng. C 15, 191 (2001) https://doi.org/10.1016/S0928-4931(01)00308-3
  34. L-L Wang and H-P. Cheng, Phys. Rev. B 69, 045404 (2004) https://doi.org/10.1103/PhysRevB.69.045404
  35. P. M. Agrawal, B. M. Rice and D. L. Thompson, Surf. Sci. 515, 21 (2002) https://doi.org/10.1016/S0039-6028(02)01916-7
  36. J. W. Kang and H. J. Hwang, Nanotechnology 14, 402 (2003) https://doi.org/10.1088/0957-4484/14/3/309
  37. J. W. Kang and H. J. Hwang, Nanotechnology 15, 115 (2004) https://doi.org/10.1088/0957-4484/15/1/022
  38. K. R. Byun, J. W. Kang and H. J. Hwang, J. Korean Phys. Soc. 45, 416 (2004)
  39. J. W. Kang and H. J. Hwang, Comp. Mater. Sci. 27, 305 (2003) https://doi.org/10.1016/S0927-0256(03)00037-5
  40. K. R. Byun, J. W. Kang and H. J. Hwang, J. Korean Phys. Soc. 42, 635 (2003)
  41. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, (Clarendon, Oxford 1987)
  42. D. Srivastava, M. Menon and K. Cho, Phys. Rev. Lett. 83, 2973 (1999) https://doi.org/10.1103/PhysRevLett.83.2973
  43. D. Bozovic, K. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, Phys. Rev. B 67, 033407 (2003) https://doi.org/10.1103/PhysRevB.67.033407
  44. H. Jiang, M-F. Yu, B. Liu and Y. Huang, Phys. Rev. Lett. 93, 185501 (2004) https://doi.org/10.1103/PhysRevLett.93.185501
  45. K. Schwab, Appl. Phys. Lett. 80, 1276 (2002) https://doi.org/10.1063/1.1449533
  46. H. J. Hwang and J. W. Kang, Physica E, in press (2005)
  47. C. J. Chen, J. Phys.: Condens. Matter 3, 1277 (1991)
  48. L. Zitzler, S. Herminghaus and F. Mugele, Phys. Rev. B 66, 155436 (2002) https://doi.org/10.1103/PhysRevB.66.155436
  49. J. Jang, G. C. Schatz and M. A. Ratner, Phys. Rev. Lett. 92, 085504 (2004) https://doi.org/10.1103/PhysRevLett.92.085504