A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore

천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구

  • Received : 2004.09.17
  • Accepted : 2004.12.14
  • Published : 2005.04.30

Abstract

In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of $SO_2$ in the pores. Among these parameters, the diffusion of $SO_2$ in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.

연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응과, grain model과 two-phase 이론에 근거한 탈황 모사를 연구하였다. 입자 내의 기공 구조변화를 고려한 grain model을 통하여 탈황 반응시간, 천연망간광석의 입자 크기, 기공 내에서 $SO_2$의 확산속도에 대한 영향을 고찰한 결과, 입자의 기공 내에서 $SO_2$ 가스 확산이 탈황 반응의 가장 중요한 요소로 나타났다. 또한, 연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응 실험결과는 grain model과 two-phase 이론과 잘 일치하였으며, 탈황 결과를 잘 예측할 수 있었다.

Keywords

Acknowledgement

Supported by : 경기대학교

References

  1. National Institute of Environmental Research, 'Environmental White Paper,'(1996)
  2. Ertl, G., Knozinger, H. and Weitcamp, J., 'Handbook of Heterogeneous Catalysis,' 4, VCH Ltd., Germany(1997)
  3. Ministry of Environment, 'Air Quality Preservation Act,'(2001)
  4. Hartman, M. and Coughlin, R. W., 'Reaction of Sulphur Dioxide with Limestone and the Grain Model,' AIChE J., 22(1), 3-11 (1976)
  5. Yates, J. G. and Best, R. J., 'Kinetics of the Reaction between Sulfur Dioxide, Oxygen, and Cupric Oxide in a Tubular, Packed Bed Reactor,' Ind. Eng. Chem. Proc. Des. Dev., 15(2), 239-244(1976) https://doi.org/10.1021/i260058a005
  6. Yeh, J. T., Drummond, C. J. and Joubert, J. I., 'Process Simulation of the Fluidized-Bed Copper Oxide Process Sulfation Reaction,' Environmental Progress, 6(1), 44-51(1987) https://doi.org/10.1002/ep.670060123
  7. Uysal, B. E., Aksahin, I. and Yucel, H., 'Sorption of Sulfur Dioxide on Metal Oxides in a Fluidized Bed,' Ind. Eng. Chem. Res., 27(2), 434-452(1988) https://doi.org/10.1021/ie00075a012
  8. Faltsi-Saravelou, O. and Vasalos, I. A., 'Simulation of a Dry Fluidized Bed Process for Sulfur Dioxide Removal from Flue Gases,' Ind. Eng. Chem. Res., 29(2), 251-256(1990) https://doi.org/10.1021/ie00098a015
  9. Partrige, B. A. and Rowe, P. N., 'Chemical Reaction in Bubbling Gas-Fluidized Bed,' Trans. Inst. Chem. Eng., 44(2), 335- 342(1966)
  10. Fryer, C. and Potter, O. E., 'Countercurrent Backmixing Model for Fluidized Bed Catalytic Reactors. Applicability of Simplified Solutions,' Ind. Eng. Chem. Fundam., 11(3), 338-343(1972) https://doi.org/10.1021/i160043a009
  11. Hartman, M. and Coughlin, R. W., 'Reaction of Sulfur Dioxide with Limestone and the Influence of Pore Structure,' Ind. Eng. Chem. Process Des. Dev., 13(1), 3-11(1974)
  12. Weast, R. C., 'Handbook of Chemistry and Physics,' 47ed., (1968)
  13. Mason, E. A., Malinauskas and Evans, 'Flow and Diffusion of Gasses in Porous Media,' J. Chem. Phys., 46(10), 3199-3205 (1967) https://doi.org/10.1063/1.1841191
  14. Bird, R. B., Stewart, W. E. and Lightfoot, E. N., 'Transport Phenomena,' John Wiley & Son, Inc(1960)
  15. Doraiswamy, L. K. and Sharma, M. M., 'Heterogeneous Reactions,' Wiley and Sons: New York, 1(1984)
  16. Kunii, D. and Levenspiel, O., 'Fluidization Engineering,' Krieger, Huntington, N.Y(1977)
  17. Kunii, D. and Levenspiel, O., 'Bubbling Bed Model. Model for Flow of Gas through a Fluidized Bed,' Ind. Eng. Chem. Fundam., 7(3), 446-451(1968) https://doi.org/10.1021/i160027a016
  18. Viswanathan, K., 'Semicompartmental Approach to Fluidized Bed Reactor Modeling. Application to Catalytic Reactors,' Ind. Eng. Chem. Fundam., 21(4), 352-360(1982) https://doi.org/10.1021/i100008a006
  19. Kato, K. and Wen, C. Y., 'Bubble Assemblage Model for Fluidized Bed Catalytic Reactors,' Chem. Eng. Sci., 24(5), 1351- 1365(1969) https://doi.org/10.1016/0009-2509(69)85055-4
  20. Mori, S. and Wen, C. Y., 'Estimation of Bubble Diameter in Gaseous Fluidized Beds,' AIChE J., 21(1), 109-117(1975) https://doi.org/10.1002/aic.690210114
  21. Geldart, D., 'The Size and Frequency of Bubbles in Two- and Three-Dimensional Gas-Fluidised Beds,' Powder Tech., 4(1), 41- 47(1971) https://doi.org/10.1016/0032-5910(70)80007-9