The Ultimate Behavior of the Circular Hollow Section Arch Rib for Steel Arch Deck Bridges

상로 아치교의 강관 아치 리브의 극한 거동에 관한 연구

Kim, Il-Tae;Kwon, Young-Bong;Lee, Wan-Soo;Lee, Yong-Hun
김일태;권영봉;이완수;이용훈

  • Published : 2005.05.31

Abstract

In recent years, steel arch bridges has gained an established application in the medium span bridges owing to the excellence in the structural stability and the beauty of the arch structure. The circular tube arch rib used in the arch bridges often, has high local and flexural-torsional buckling strength. Therefore, since the buckling modes and deformed shapes under the lateral load are different in many cases, elastic membrane and out-of-plane buckling analysis can not suffice for the estimation of the stability for arch structures but the elasto-plastic buckling behavior and ultimate strength of the steel arch rib should be investigated further. The numerical research on the ultimate behavior and the failure mode of circular arch ribs for deck bridges is presented in this paper. Elastic buckling analyses, geometrical nonlinear and material nonlinear analyses have been carried out to investigate the buckling strength, buckling modes, post-buckling strength, ultimate strength and failure modes of arch ribs. The effects of main factors such as boundary condition, yielding stress of the material, load cases, lateral supports, slenderness ratio of arch rib and included angle into the ultimate strength of arch ribs have been studied.

최근 국내에서는 구조적인 안정성과 미관이 뛰어난 중경간 강아치교의 건설이 증가하는 추세에 있다. 아치교의 아치 리브로 흔히 사용되는 원형강관은 국부좌굴강도와 휨좌굴강도가 다른 형강에 비하여 상대적으로 크다. 따라서 좌굴모드와 횡하중에 따른 변형형상이 많은 경우에 전혀 다르기 때문에, 면내외의 좌굴에 대한 탄성좌굴해석 만으로 아치리브의 안정성을 검토하는 것은 별 의미가 없으며, 추가적인 강재의 탄-소성좌굴거동 및 극한강도의 평가가 필요하다. 본 논문에서는 상로아치교의 강관 아치 리브의 극한거동 및 파괴양상을 해석적인 방법으로 연구하였다. 아치 리브의 극한강도를 평가하기 위하여 탄성좌굴해석, 기하 및 재료비선형해석을 수행하여, 각 해석 방법에 따른 아치 리브의 좌굴강도, 좌굴모드, 후좌굴강도, 극한강도 및 파괴양상 등을 비교.검토하였다. 또한 아치 리브의 지점조건, 강재의 항복응력, 하중재하형태, 횡방향 구속조건, 아치 리브의 세장비 및 라이즈비 등과 같은 중요 변수들이 아치 리브의 극한 거동에 미치는 영향을 파악하였다.

Keywords

References

  1. Austin, W.J. and Ross, T.J. (1976) Elastic buckling of arches under symmetrical loading, Journal of the Structural Division, ASCE 102, 1085-1095
  2. Bathe, K.J. (1996) Finite Element Procedures, Prentice-Hall, Englewood Cliffs, N.J
  3. Bazant, Z.P., and Cedolin, L. (1991) Stability of structures, Oxford uni, 891, 227-238
  4. Cheng, J. and Jiang, J.J. (2002) Ultimate behavior of long-span steel arch bridges, Structural Eng and Mech, Vol. 14, No. 3, 331-343 https://doi.org/10.12989/sem.2002.14.3.331
  5. Cheng, J. (2002) Study on some issues in long-span bridges, Postdoctoral Research Report, Tsinghua University
  6. Harrison, H. (1982) In-plane stability of parabolic of arches, Journal of the Structural Division, ASCE 108, 195-205
  7. Paola, Ronca and Cohn, M.Z. (1979) Limit analysis of reinforced concrete arch bridges, J. Struct. Div., ASCE, 105(ST2), February, 313-326
  8. Pi, Y.-L., and Bradford, M.A. (2003) Elasto-plastic buckling and postbuckling of arches subjected to a central load, Computers and Structures 81, 1811-1825 https://doi.org/10.1016/S0045-7949(03)00204-9
  9. Sadao, Komatsu and Tatsuro, Sakimoto (1977) Ultimate load carrying capacity of steel arches, J. Struct. Div., ASCE, 103(ST12), December, 2323-2336
  10. Shukla, S. and Ojalvo, M. (1971) Lateral buckling of parabolic arches with tiling loads, Journal of the Structural Division
  11. Theodore V. Galambos (1998) Guide to stability design criteria for metal structures 5th, John wiley & sons Inc, 22-23
  12. Tokarz, F.J. and Sandhu, R.S. (1972) Lateral-Torsional Buckling of Parabolic Arches, ASCE J.Struct. Div, Vol. 98, ST5, 1161-1179
  13. Wen, R.K. and Medallah, K. (1987) Elastic stability of deck-type arch bridges, Journal of the Structural Engineering, ASCE 113, 757-768 https://doi.org/10.1061/(ASCE)0733-9445(1987)113:4(757)
  14. Yan, Q.S. and Han, D.J. (1999) Nonlinear stability of the Jiefang concrete-filled steel tube tie-bar arch bridges, Journal of South China University of Technology, 27(11), 98-103
  15. Yong, L.P. and Trahair, N.S. (1994) Nonlinear inelastic analysis of steel beam-columns I: Theory, J. Struct. Eng., 120(7), July, 2041-2061 https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2041)