Damage Detection for Bridges Using Ambient Vibration Data

상시진동 데이테를 이용한 교량의 손상추정기법

Lee, Jong-Jae;Lee, Jong-Won;Yun, Chung-Bang
이종재;이종원;윤정방

  • Published : 2005.03.31

Abstract

In this study, the neural networks-based damage detection of bridge structures is presented using ambient vibration data caused by traffic loadings. The general procedure consists of construction of a baseline finite element (FE) model at the initial stage of the bridge operation, ambient vibration test, identification of the modal parameters, and assessment of the damage locations and severities based on the changes of modal properties. In this study, it is assumed that there exists unknown error in the baseline FE model, then, modal parameters less sensitive to the modeling errors are employed as the input to the neural networks to reduce the effect of the discrepancies between the modes calculated from the initial FE model and the measured ones. In laboratory test, vehicle running test was performed on a simply supported bridge model using model vehicles to simulate traffic loads. In field test on a Hannam Grand Bridge, ambient vibration tests were carried out using the traffic loads on the adjacent new bridge and the train and vehicle loads under the test bridge as vibration sources. Through a laboratory and a filed test, the effectiveness and the applicability of the proposed methods were verified.

본 연구에서는 교통하중에 의한 상시진동 데이터를 이용하여 신경망기법기반 교량의 손상추정을 수행하였다. 상시진동시험에 의한 손상추정의 과정은 일반적으로 교량 개통초기 손상전 측정기록에 의한 기저 유한요소모델의 개선, 공용하중하의 상시진동 데이터의 획득, 모드계수의 추정, 손상 위치 및 정도의 추정으로 이루어진다. 본 연구에서는 기저 유한요소모델에 모델링 오차가 존재한다는 가정하에, 모델링오차에 민감하지 않은 모드계수를 신경망의 입력으로 사용하여 해석모드와 실험모드의 불일치에 의한 손상추정 오차를 줄이고자 하였다. 실내실험에서는 통행 차량하중을 모사하기 위하여 모형차량을 이용하여 주행실험을 수행하였다. 한남대교에 대한 현장실험에서는 인접교량을 통행하는 차량하중과 대상교량 하부를 통과하는 열차 및 차량하중을 진동원으로 이용하여 상시진동시험을 수행하였다. 실내실험과 현장실험을 통하여 본 연구의 효율성과 적용성을 검증하였다.

Keywords

References

  1. 윤정방, 이종원, 박동욱, 김재동(2000) 교통하중에 의한 상사미진동을 이용한 교량 모드특성 추정기법, 대한토목학회 논문집, Tol. 20, No 4, pp. 597-605
  2. Asmussen, J.C, Ibrahim, S.R, and Brincker, R. (1997) Application of vector triggering random decrement, Proceedings of 15th International Modal Analysis Conference, pp. 1165-1171, Orlando, USA
  3. Bendat, J.S. and Piersol, A.G. (1993) Engineering applications of correlation and spectral analysis, John Wiley & Sons, New York, USA
  4. Brincker, R, Zhang, L. and Andersen, P (2000) Modal identification from ambient response using frequency domain decomposition, Proceedings of 18th International Modal Analysis Conference, pp. 625-630
  5. Chase, S.B. and Aktan, A.E. (eds.) (2001) Health Monitoring and Management of Civil Infrastructure Systems, SPIE, Vol. 4337
  6. Doebling, S. W, Farrar, C. R. and Prime, M. B. (1998) A Summary Review of Vibration-Based Damage Identification Methods, the Shock and Vibration, Digest, Vol. 30, No.2, 91-105
  7. Doebling, S.W., Farrar, C.R., and Cornwell, P. (1997) A statistical comparison of impact and ambient testing results from the Alamosa Canyon Bridge, Proceedings of 15th International Modal Analysis Conference, pp. 264-270
  8. Farrar, C.R., Baker, W.E., Bell, T.M, Cone, K.M., Darling, T.W., Duffey, T.A., Eklund, A., and Migliori, A. (1994) Dynamic characterization and damage detection in the 1-40 bridge over Rio 'Grande, Los Alamos National Laboratory Report LA-12767-MS
  9. Gawronski, W. and Sawicki, J.T. (2000) Structural damage detection using modal norms, Journal of Sound and Vibration, 229(1), pp, 194-198 https://doi.org/10.1006/jsvi.1999.2179
  10. Hou, Z., Noon, M. and St. Amand, R. (2000) Wavelet-based approach for structural damage detection, Journal of Engineering Mechanics, ASCE, 126(7)
  11. Huang, N.E., Shen, Z. and Long, S.R. (1999) A new view of nonlinear water waves: the Hilbert spectrum, Ann. Rev. Fluid Mech, 31, pp. 417-475 https://doi.org/10.1146/annurev.fluid.31.1.417
  12. Ibrahim, S.R. (1977) Random decrement technique for modal identification of structures, Journal of Spacecraft and Rockets, Vol.14, No.11, pp.696-700 https://doi.org/10.2514/3.57251
  13. Kirn.J.T. and Stubb, N. (1995) Model uncertainty impact and damage-detection accuracy in plate girder, Journal of Structural Engineering, ASCE, Vol. 121, No. 10, pp. 1409-1417 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1409)
  14. Ko, J.M., Chak, K.K, Wang, J.Y., Ni, Y.Q., and Chan, T.H.T. (2003) Formulation of an uncertainty model relating modal parameters and environmental factors by using long-term monitoring data, Smart Systems and Nondestructive Evaluation for Civil Infrastructures, S.-C Liu (ed.), SPlE, Vol. 5057
  15. Lee, J.W., Kim, J.D., Yun, C.B., Yi, J.H. and Shim, J.M. (2002) Health-monitoring method for bridges under ordinary traffic loadings, Journal of Sound and Vibration, 257(2), pp. 247-264 https://doi.org/10.1006/jsvi.2002.5056
  16. Ni, Y.Q., Wang, B.S. and Ko, J.M. (2002) Constructing input vectors to neural networks for structural damage identification, Smart Materials and Structures, Vol. 11, pp. 825-833 https://doi.org/10.1088/0964-1726/11/6/301
  17. Otte, D., Van de Ponseele, P., and Leuridan, J. (1990) operational shapes estimation as a function of dynamic loads, Proceedings of the 8th International Modal Analysis Conference, pp. 413-421
  18. Quek, S.T., Wang, Q., Zhang, L. and Ong, K.H. (2001) Practical issues in the detection of damage in beams using wavelets, Smart Materials and Structures, 10, pp. 009-1017
  19. Sampaio, R.P.C., Maia, N.M.M. and Silva, J.M.M. (1999) Damage detection using the frequency response function curvature method, Journal of Sound and Vibration, 226(5), pp. 1029-1042 https://doi.org/10.1006/jsvi.1999.2340
  20. Szewczyk, Z.P. and Hajela, P. (1994) Damage detection in structures based on feature-sensitive neural networks, Journal of Computing in Civil Engineering, ASCE, Vol. 8, No. 2, pp. 163-178 https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(163)
  21. Wu, X., Ghaboussi, J., and Garret, J.H., Jr, (1992) Use of neural networks in detection of structural damage, Computers and Structures, Vol. 42, No. 4, pp. 649-659 https://doi.org/10.1016/0045-7949(92)90132-J
  22. Yang, J.N., Kagoo, P.K, and Lei, Y. (2000) Parametric identification of tall buildings using ambient wind vibration data, Proceedings of Sth ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability
  23. Yun, C.B. and Bahng, E.Y. (2000) Substructural identification using neural networks, Computers and Structures, Vol. 77, No. 1, pp. 41-52 https://doi.org/10.1016/S0045-7949(99)00199-6
  24. Yun, C.B. and Hong, K.S. (1992) Damage assessment of structures by inverse modal perturbation method, Proceedings of the 4th East Asia-Pacific Conference on Structural Engineering and Construction, Seoul, Korea
  25. Zou, J., Chen, J., Pu, Y.P. and Zhong, P. (2002) On the wavelet time-frequency analysis algorithm in identification of a cracked rotor, Journal of Strain Analysis, 37(3), pp. 239-246 https://doi.org/10.1243/0309324021514998
  26. Zou, Y., Tong, L. and Steven, G. P. (2000) Vibration-Based ModelDependent Damage (Delamination) Identification and Health Monitoring For Composite Structures - A Review, Journal of Sound and Vibration, 230(2), pp. 357-378 https://doi.org/10.1006/jsvi.1999.2624