Characteristics on the two Automatic $PM_{10}$Analyzers of the Different Measuring Method and Analysis of the Comparing Observation Data of the Analyzers

관측방법이 다른 두 종류의 $PM_{10}$자동관측기 특성 및 비교 관측자료 분석

Cha, Joo-Wan;Choi, Byoug-Cheol;Choi, Jae-Cheon;Chung, Sang-Boo
차주완;최병철;최재천;정상부

  • Published : 20050200

Abstract

The meteorological conditions are very important when we observe aerosol mass concentration. Especially, a relative humidity mostly affects the aerosol mass measurement. The aim of study is to understand the characteristics on automatic $PM_{10}$ analyzers for monitoring Asian dust and to analyze the $PM_{10}$ mass concentration with meteorological conditions such as relative humidity and wind speed. Under the meteorological condition, the new $PM_{10}$ analyzer of the GRIMM company includes the removing humidity system. In this study, we compare the Anderson $PM_{10}$ analyzer that is usually used for monitoring Asian dust in Korea with that of the GRIMM company. The both concentrations of the $PM_{10}$ analyzers are increased as the relative humidity is high. The maritime air mass causes to increase $PM_{10}$ mass concentration because the air mass has a lot of humidity. In that case, the accuracy of observing $PM_{10}$ mass concentration depends on the dehumidifying system in the each $PM_{10}$ analyzer. The Anderson $PM_{10}$ analyzer is relatively more affected by relative humidity than the GRIMM $PM_{10}$ analyzer. The Anderson $PM_{10}$ analyzer is a filter based observing instrument and the GRIMM $PM_{10}$ analyzer is an optical observing instrument. The $PM_{10}$ concentration in the ambient is affected by the effective establishment of dehumidifying system in each $PM_{10}$ analyzer. The GRIMM $PM_{10}$ analyzer has more good dehumidifying system than that of the Anderson $PM_{10}$ analyzer. To understand the relative humidity effect in the each $PM_{10}$ analyzer, Nephelometer that measure the aerosol scattering coefficients under controlling relative humidity is compared with the $PM_{10}$ analyzers. The correlation of aerosol scattering coefficient at 500 nm by Nephelometer and the $PM_{10}$ mass concentration by the $PM_{10}$ analyzers is 0.8 at the GRIMM $PM_{10}$ mass concentration and 0.7 at the Anderson $PM_{10}$ mass concentration. In the comparison of the GRIMM $PM_{10}$ analyzer with the Anderson $PM_{10}$ analyzer, the GRIMM $PM_{10}$ analyzer is less affected by relative humidity than Anderson $PM_{10}$ analyzer. Therefore, more exact observation of dust mass concentration in the ambient air depends on the improvement of dehumidifying system in the $PM_{10}$ mass concentration measurements.

Keywords

References

  1. 김희갑, 정경비, 김동진, 이종태,2002: 춘천에서 2002년 봄철 황사 발생기간 동안에 채취된 미세분진 중 무기성분 특성, 환경독성학회지, 17(4), 333-339
  2. 박민화, 김용표, 강창희,2001: 황사/비황사의 입자 조성변화 1993-1996년의 봄철 고산 측정자료, 한국대기환경학회지, 17, 487-491
  3. 오진만, 김득수,2001: 군산지역 부유분진의 계절적 농도변화와 화학적 조성에 대한 연구, 한국대기환경학회지, 17, 475-485
  4. 이승복, 배귀남, 김용표, 진현철, 윤용석, 문길주, 2002: 황해 덕적도의 대기에어로졸 특성,한국대기환경학회지, 18, 305-316
  5. Ammann, M., M Kalberber, D. T. Jost, L.Tobler, E. Rossler, D. Piguet, H.W. Gaggeler, and U. Baltensperger, 1998: Heterogenious production of nitrous acid on soot in polluted air masses, Nature, 395, 157-160 https://doi.org/10.1038/25965
  6. Benkovitz, C. M., and S. E. Schwartz, 1997: Evaluation of Modeled sulfate and S02 over North America and Europe for four seasonal months in 1986-1987, J. of Geophy. Res., 102, 25305-25338 https://doi.org/10.1029/97JD02211
  7. Chin, M., D. L. Savoie, B. J. Huebert, A.R. Bandy, D. C. Thornton, T.S. Bates, B. K. Quinn, E. S. Saltzman, and W. J. Bruyn, 2000: Atmospheric sulfur cycle simulated in the Global Model GOCART: Comparison with field observations and regional budgets, J. of Geophy. Res., 105,24689-247121 https://doi.org/10.1029/2000JD900385
  8. Finalayson-Pitts, B. J., and J. N. pitts Jr., 1997: Thropospheric air pollution: Ozone airborne toxics, polycyclic aromatic hydrocarbons, and particle, Science, 276, 1045-1052 https://doi.org/10.1126/science.276.5315.1045
  9. Ghan, S. J, R. C. Easter, E. G. Chapman, H. Abdul- Razzak, Y. Zhang, L. R. Leung, N. S. Laulainen, R. D. Saylor, and R. A. Zaveri, 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol, J. of Geophy. Res., 106, 5379-5293
  10. Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: An alternative scenario, Pro. Natl, Acad. sci. USA., 97, 9875-9880
  11. Hegg D.A, D. S. Covert, and K. Crahan, 2002: The dependance of aerosol light -scattering on RH over the Pacific Ocean, Geophys. Res. Letter., 29,1219-1223 https://doi.org/10.1029/2001GL014495
  12. Kalberer, M., M. Ammann, H. W. gaggeler, and U. Baltensperger, 1999: Absorption of $NO_2 $ on carbon aerosol particles in the low ppb range, Atmos. Environ., 33, 2815-2822 https://doi.org/10.1016/S1352-2310(98)00390-2
  13. Kasibhatla, P., W. L. Chameides, and S.S. John, 1997a: A three-dimensional global model investigations of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosol, J. of Geophy. Res., 102,3737-3759 https://doi.org/10.1029/96JD03084
  14. Kasibhatla, P., W. L. Chameides, B. Duncan, M. Houyoux, C. Jang, R. Mathur, T. Odman, and A. Xiu, 1997b: A impact of inert organic nitrate formation on the ground-level ozone in the regional air quality model using the carbon bond mechanism 4, Geophy. Res., lett., 24,3205- 3208 https://doi.org/10.1029/97GL03260
  15. Langner, J., and H .. Rodhe, 1991: A global three-dimensional model of the tropospheric sulfate cycle, J. Atmos. Chem., 13, 225-263 https://doi.org/10.1007/BF00058134
  16. Ogren, J. A., 1995: Asystematic approach to in situ observations of aerosol properties, in Aerosol forcing of Climate, 215-226
  17. Penner,J. E. 2002: Comparison of model-and satellite- derived aerosol optical depth and reflectivity, J. Atmos. Sci., 59,441-460 https://doi.org/10.1175/1520-0469(2002)059<0441:ACOMAS>2.0.CO;2
  18. Putaud J. P., Rita Van Dingenen, and Frank Rase, 2002: Submicron aerosol mass balance at urban and semirural sites in the Milan area (Italy), J. of Geophys. Res., 107, 8198-8208 https://doi.org/10.1029/2000JD000111
  19. Rasch, P. J. M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M.Benkovitz, 2000: A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric research Community Climate Model, Version 3,J. of Geophy. Res., 105, 1367-1385 https://doi.org/10.1029/1999JD900777
  20. Schwartz, S. E. 1996: The whitehouse effect-Shortwave radiative forcing of climate by anthropogenic aerosols: An overview, J. Aerosol Sci., 27,359-382 https://doi.org/10.1016/0021-8502(95)00533-1
  21. Sisler, J. F., and W. C. Malm, 2000: Interpretation of trends of PM2.5 and reconstructed visibility from the IMPROVE network. J. Air Waste Manage. Assoc., 50, 775-789 https://doi.org/10.1080/10473289.2000.10464127
  22. Von Salzen, K., H.G. Leighton, P. A. Ariy, L. A. Barrie, S. L. Gong, J. P. Blanchet, L. Spacek, U. Lohmann, and L. I. Kleinman, 2000: Sensitivity of sulfate aerosol size distributions and CCN concentrations, J. Geophys. Res., 105,9741-9765 https://doi.org/10.1029/2000JD900027
  23. Yu, Shaocai, Prasad S. Ksibhatla, and Douglas L. Wright, 2003: Moment -based simulation of microphysical properties of sulfate aerosols in the eastern United States: Model description, evaluation, and regional analysis.J. of Geophy. Res., 108, D12, 4353-4373 https://doi.org/10.1029/2002JD002890
  24. Yu, S. C, V. K. Saxena, B. N. Wenny, J.J. DeLuisi, G. K. Yue, and I. V. Petropavlovskikh, 2000: A study of the aerosol radiative properties needed to compute direct aerosol forcing in the southeastern United States, J. of Geophy. Res., 105,24734-24749
  25. Yu, S. C, C. S. Zender, and V. K. Saxena, 2001: Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern United States: Model estimates on the basis of the new observation ,Atmos. Environ., 35,3967-3977 https://doi.org/10.1016/S1352-2310(01)00187-X
  26. Yue, G. K., J. Lu, V. A.. Mohnen, P. H. Wang, V. K. Saxena, and J. Anderson, 1997: Retrieving aerosol optical properties from moments of the particle size distribution, Geophy. Res., Letter, 24,651-654 https://doi.org/10.1029/97GL00522