Photocatalytic Activity of Pd-Doped $TiO_2$ Thin Films by Using a RF Magnetron Co-Sputtering Method

Kim, Sang-Cheol;Heo, Min-Chan;Hahn, Sung-Hong;Kim, Eui-Jung

  • Published : 20051000

Abstract

$Pd/TiO_2$ thin films on quartz glass were prepared by using a RF magnetron co-sputtering process, and the calcination effects on their physical and chemical properties were investigated. The films were in the anatase phase at 300 - $600\;^{\circ}C$ and the rutile phase at $900\;^{\circ}C$. The crystallite sizes of $Pd/TiO_2$ thin films were slightly larger than those of the $TiO_2$ thin films. The secondary particle sizes of $Pd/TiO_2$ thin films at $600\;^{\circ}C$ were about 20 - 60 nm, and the secondary particles were more uniform and less agglomerated. The deposited films calcined at 300 - $600\;^{\circ}C$ had high transparency in the visible range. The transmittances of the films calcined at $900\;^{\circ}C$ were significantly reduced in the wavelength range of 300 - 800 nm due to the absorption and the scattering of light resulting from agglomerates of the primary particles. The $Pd/TiO_2$ thin films showed better photocatalytic activity than the $TiO_2$ thin films.

Keywords

References

  1. C. Liu, Q. Fu, J. B. Wang, W. K. Zhao, Y. L. Fang, T. Mihara and M. Kiuchi, J. Korean Phys. Soc. 46, 104 (2005)
  2. S. H. Woo, S. H. Kim and C. H. Hwangbo, J. Korean Phys. Soc. 45, 99 (2004)
  3. A. Bahtat, M. Bouazaoui, M. Bahatat, C. Garapon, B. Jacquier and J. Mugnier, J Non-Crytalline Solids 202, 16 (1996) https://doi.org/10.1016/0022-3093(96)00172-X
  4. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature 395, 583 (1998) https://doi.org/10.1038/26936
  5. G. Banfi, V. Degiorgo and D. Ricard, Adv. Phys. 47, 447 (1998) https://doi.org/10.1080/000187398243537
  6. I. Hayakawa, Y. Iwamoto, K. Kikuta and S. Hirano, Sensors Actuators B 62, 55 (2000) https://doi.org/10.1016/S0925-4005(99)00303-2
  7. Y. Yan, S. R. Chaudhuri and A. Sarkar, J. Am. Ceram. Soc. 79, 1061 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08548.x
  8. S. Takeda, S. Suzuki, H. Odaka and H. Hosono, Thin Solid Films 392, 338 (2001) https://doi.org/10.1016/S0040-6090(01)01054-9
  9. J. K. Yang and A. P. Davis, Environ. Sci. Technol. 34, 3796 (2000) https://doi.org/10.1021/es990875h
  10. K. J. Buechler, R. D. Noble, C. A. Koval and W. A Jacoby, Ind. Eng. Res. 38, 892 (1999) https://doi.org/10.1021/ie9804374
  11. G. Zhao, H. Kozuka and T. Yoko, Thin Solid Films 277, 147 (1996) https://doi.org/10.1016/0040-6090(95)08006-6
  12. A. Aidla, T. Uustare, A. A. Kiisler, J. Aarik and V. Sammelselg, Thin Solid Films 305, 270 (1997) https://doi.org/10.1016/S0040-6090(97)00135-1
  13. A. R. Bally, E. N. Korbeinikova, P. E. Schmid, F. Levy and F. Bussy, J. Phys. D: Appl. Phy. 31, 1149 (1998) https://doi.org/10.1088/0022-3727/31/10/004
  14. Y. Tachibana, H. Ohsaki, A. Hayashi, A. Mitsui and Y. Hayashi, Vacuum 59, 836 (2000) https://doi.org/10.1016/S0042-207X(00)00354-7
  15. N. Martin, C. Rousselot, D. Rondot, F. Palmino and R. Mercier, Thin Solid Films 300, 113 (1997) https://doi.org/10.1016/S0040-6090(96)09510-7
  16. F. Lapostolle, A. Billard and J. von Stebut, Surf. Coat. Technol. 135, 1 (2000) https://doi.org/10.1016/S0257-8972(00)00721-0
  17. N. Martin, C. Rousselot, C. Savall and F. Palmino, Thin Solid Films 287, 154 (1996) https://doi.org/10.1016/S0040-6090(96)08782-2
  18. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987) https://doi.org/10.1021/j100300a021
  19. J. W. Yoon, T. Sasaki, N. Koshizaki and E. Traversa, Scripta Mater. 44, 1865 (2001) https://doi.org/10.1016/S1359-6462(01)00732-1
  20. W. Choi, A. Termin and M. Hoffmann, J. Phys. Chem. 98, 13669 (1994) https://doi.org/10.1021/j100102a038
  21. Y. R. Do, W. Lee, K. Dwight and A.Wold, J. Solid State Chem. 108, 198 (1994) https://doi.org/10.1006/jssc.1994.1031
  22. K. Baba, Y. Ohkuma, T. Yonezawa and M. Miyagi, Appl. Opt. 40, 2796 (2001) https://doi.org/10.1364/AO.40.002796
  23. R. Laird and A. Belkind, J. Vac. Sci. Technol. A 10, 1908 (1992) https://doi.org/10.1116/1.578114
  24. M. Pal, T. Sasaki and N. Koshizaki, Scripta Mater. 44, 1817 (2001) https://doi.org/10.1016/S1359-6462(01)00935-6
  25. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Notre Dame, 1978)
  26. Keiichi Tanaka, Mario F. V. Capule and Teruaki Hisanaga, Chem. Phys. Lett. 187, 73 (1991) https://doi.org/10.1016/0009-2614(91)90486-S
  27. T. Hashimoto, T. Yoko and S. Sakka, Bull. Chem. Soc. Jpn. 67, 653 (1994) https://doi.org/10.1246/bcsj.67.653
  28. M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem. 91, 4305 (1987) https://doi.org/10.1021/j100300a021
  29. T. M. Wang, S. K. Zheng, W. C. Hao and C. Wang, Surf. Coat. Tech. 155, 141 (2002)
  30. H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox and M. Anpo, J. Catalysis 158, 97 (1996) https://doi.org/10.1006/jcat.1996.0010
  31. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann and V. Murugesan, Water. Research 38, 3001 (2004) https://doi.org/10.1016/j.watres.2004.04.046