Potassium loading effects for activated carbon fiber pre-treated with phosphoric acid

인산을 전처리한 활성탄소섬유에 칼륨 처리효과

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Bae, Jang-Soon (Department of Industrial Chemistry, Dankook University)
  • Received : 2005.04.04
  • Accepted : 2005.07.20
  • Published : 2005.08.25

Abstract

The objective of this paper is to compare the surface features of two kinds of activated caron fiber (ACF) treated with potassium and the variation of their properties by phosphoric acid pre-treatment. X-ray diffraction (XRD) patterns indicate that activated carbon fiber containing potassium species show better performance for metal and metal salts by pre-treatment with phosphoric acid. In order to present the causes of the differences in surface properties and specific surface area after the samples were treated with phosphoric acid, pore structure and surface morphology were investigated by adsorption analysis and SEM. For the chemical composition microanalysis for potassium leading of the activated carbon fibers pre-treated with phosphoric acid, samples were analyzed by EDX. Finally, the type and quality of oxygen groups were determined from the method proposed by Boehm.

본 연구는 인산의 전처리에 의한 두 종류의 활성탄소섬유의 특성 변화와 여기에 칼륨을 처리하여 표면 특성을 비교하고자 하였다. X-선 회절 패턴은 인산을 전처리함에 따라 칼륨종을 포함하는 활성탄소섬유에 대한 금속과 금속염의 존재에 대한 좋은 결과를 나타내었다. 인산을 처리한 후에 표면특성과 비표면적 변화에 차이의 원인을 나타내기 위하여, 동공구조와 표면 모폴로지를 흡착분석과 SEM에 의하여 연구하였다. 인산을 가지고 전처리한 활성탄소섬유의 칼륨 처리효과에 대한 화학적 구성에 대한 원소분석을 위하여 EDX를 사용하였다. 최종적으로, 산소를 포함하는 기능기의 형태와 정성분석은 Boehm에 의하여 제안된 방법으로 부터 결정하였다.

Keywords

References

  1. J. A. Menendez, J. Phillips, B. Xia and L. R. Radovic, Langmuir, 12, 4404(1996) https://doi.org/10.1021/la9406923
  2. J. A. Menendez, J. Phillips, B. Xia and L. R. Radovic, Langmuir, 13, 3414(1997) https://doi.org/10.1021/la970200x
  3. R. C. Bansal, F. J. Vastola and P. L Walker Jr., Carbon, 12, 355(1974) https://doi.org/10.1016/0008-6223(74)90078-5
  4. W. C. Oh and M. H. Yum, Bull. Korean Chem. Soc., 25(8), 1189(2004)
  5. A. Lisovski, R. Semiat and C. Aharoni, Carbon, 35, 1639(1997) https://doi.org/10.1016/S0008-6223(96)00122-4
  6. C. U. Pittman Jr., G. R. He, B. Wu and S. D. Gardner, Carbon, 35, 317(1997) https://doi.org/10.1016/S0008-6223(96)00122-4
  7. I. N. Emolenko, I. P. Lyubliner, N. V. Gulko, In: Chemically modified carbon fibers and their application, New York: VCH, 1990 Chapter 6, p 155
  8. W. C. Oh, H. J. Lee and J. S. Bae, J. Korean Ind. Eng Chem., 15(4), 434(2004)
  9. H. P. Boehm, Advances in catalysis, Academic press, New York, 1966
  10. W. C. Oh, J. Ind. Eng Chem., 11(1), 137(2005)
  11. Langmuir v.12 Menendez, J.A.;Phillips, J.;Xia, B.;Radovic, L.R.
  12. Langmuir v.13 Menendez, J.A.;Phillips, J.;Xia, B.;Radovic, L.R.
  13. Carbon v.12 Bansal, R.C.;Vastola, F.J.;Walker, P.L. Jr.
  14. Bull. Korean Chem. Soc. v.25 no.8 Oh, W.C.;Yum, M.H.
  15. Carbon v.35 Lisovski, A.;Semiat, R.;Aharoni, C.
  16. Carbon v.35 Pittman, C.U. Jr.;He, G.R.;Wu, B.;Gardner, S.D.
  17. Chemically modified carbon fibers and their application Emolenko, I.N.;Lyubliner, I.P.;Gulko, N.V.
  18. J. Korean Ind. Eng. Chem. v.15 no.4 Oh, W.C.;Lee, H.J.;Bae, J.S.
  19. Advances in catalysis Bochm, H.P.
  20. J. Ind. Eng. Chem. v.11 no.1 Oh, W.C.