DOI QR코드

DOI QR Code

Annealing Characteristics of Oxygen Free Copper Severely Deformed by Accumulative Roll-Bonding Process

ARB법에 의해 강소성가공된 무산소동의 어닐링 특성

  • Lee Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Cho Jun (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee Chung-Hyo (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Han Seung-Zun (Department of Materials Technology, Korea Institute of machinery and Materials) ;
  • Lim Cha-Yong (Department of Materials Technology, Korea Institute of machinery and Materials)
  • 이성희 (목포대학교 신소재공학과) ;
  • 조준 (목포대학교 신소재공학과) ;
  • 이충효 (목포대학교 신소재공학과) ;
  • 한승전 (한국기계연구원 재료연구부) ;
  • 임차용 (한국기계연구원 재료연구부)
  • Published : 2005.09.01

Abstract

An oxygen free copper severely-deformed by eight cycles (an equivalent strain of $\~6.4$) of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $300^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $150^{\circ}C$, however above $200^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. Tensile strength and hardness of the copper decreased slightly with the annealing temperature up to $150^{\circ}C$, however they dropped largely above $200^{\circ}C$. Annealing characteristics of the copper were compared with those of a commercially pure aluminum processed by ARB and subsequently annealed.

Keywords

References

  1. R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev, Mater. Sci. Eng., A137, 35 (1991) https://doi.org/10.1016/0921-5093(91)90316-F
  2. R. Z. Abdulov, R. Z. Valiev and N.A. Krasilnilov, Mater. Sci. Lett., 9, 1445 (1990) https://doi.org/10.1007/BF00721611
  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998) https://doi.org/10.1016/S1359-6462(98)00302-9
  4. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 795 (1999) https://doi.org/10.1016/S1359-6462(99)00015-9
  5. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scripta Mater., 47, 893 (2002) https://doi.org/10.1016/S1359-6462(02)00282-8
  6. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325, 228 (2002) https://doi.org/10.1016/S0921-5093(01)01416-2
  7. S. H. Lee, Y. Saito, K. T. Park and D. H. Shin, Mater. Trans., 43, 2320 (2002) https://doi.org/10.2320/matertrans.43.2320
  8. S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, T. Sakai, Mater. Trans., 44, 1376 (2003) https://doi.org/10.2320/matertrans.44.1376
  9. Y. Saito, H. Utsunomiya and H. Suzuki, Proc. Inst. Mech. Eng. Ser. B, 215, 947 (2001) https://doi.org/10.1243/0954405011518854
  10. J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe, Acta Mater., 49, 1497 (2001) https://doi.org/10.1016/S1359-6454(01)00069-6
  11. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15, 240 (2005) https://doi.org/10.3740/MRSK.2005.15.4.240
  12. N. Tsuji, Y. Ito, H. Nakashima, F. Yoshida and Y. Minamino, Mater. Sci. Forum, 423, 396 (2002)
  13. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 1st ed., p.129, Elsevier Science Ltd., England, (1995)