Quantitative Differences between X-Ray CT-Based and $^{137}Cs$-Based Attenuation Correction in Philips Gemini PET/CT

GEMINI PET/CT의 X-ray CT, $^{137}Cs$ 기반 511 keV 광자 감쇠계수의 정량적 차이

  • Kim, Jin-Su (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Park, Eun-Kyung (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Jong-Hyo (Departments of Radiology, Seoul National University College of Medicine) ;
  • Kim, Jae-Il (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Hong-Jae (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Chung, June-Key (Departments of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Departments of Nuclear Medicine, Seoul National University College of Medicine)
  • 김진수 (서울대학교 의과대학 핵의학교실) ;
  • 이재성 (서울대학교 의과대학 핵의학교실) ;
  • 이동수 (서울대학교 의과대학 핵의학교실) ;
  • 박은경 (서울대학교 의과대학 핵의학교실) ;
  • 김종효 (서울대학교 의과대학 진단방사선과학교실) ;
  • 김재일 (서울대학교 의과대학 핵의학교실) ;
  • 이홍재 (서울대학교 의과대학 핵의학교실) ;
  • 정준기 (서울대학교 의과대학 핵의학교실) ;
  • 이명철 (서울대학교 의과대학 핵의학교실)
  • Published : 2005.06.30

Abstract

Purpose: There are differences between Standard Uptake Value (SUV) of CT attenuation corrected PET and that of $^{137}Cs$. Since various causes lead to difference of SUV, it is important to know what is the cause of these difference. Since only the X-ray CT and $^{137}Cs$ transmission data are used for the attenuation correction, in Philips GEMINI PET/CT scanner, proper transformation of these data into usable attenuation coefficients for 511 keV photon has to be ascertained. The aim of this study was to evaluate the accuracy in the CT measurement and compare the CT and $^{137}Cs$-based attenuation correction in this scanner. Methods: For all the experiments, CT was set to 40 keV (120 kVp) and 50 mAs. To evaluate the accuracy of the CT measurement, CT performance phantom was scanned and Hounsfield units (HU) for those regions were compared to the true values. For the comparison of CT and $^{137}Cs$-based attenuation corrections, transmission scans of the elliptical lung-spine-body phantom and electron density CT phantom composed of various components, such as water, bone, brain and adipose, were performed using CT and $^{137}Cs$. Transformed attenuation coefficients from these data were compared to each other and true 511 keV attenuation coefficient acquired using $^{68}Ge$ and ECAT EXACT 47 scanner. In addition, CT and $^{137}Cs$-derived attenuation coefficients and SUV values for $^{18}F$-FDG measured from the regions with normal and pathological uptake in patients' data were also compared. Results: HU of all the regions in CT performance phantom measured using GEMINI PET/CT were equivalent to the known true values. CT based attenuation coefficients were lower than those of $^{68}Ge$ about 10% in bony region of NEMA ECT phantom. Attenuation coefficients derived from $^{137}Cs$ data was slightly higher than those from CT data also in the images of electron density CT phantom and patients' body with electron density. However, the SUV values in attenuation corrected images using $^{137}Cs$ were lower than images corrected using CT. Percent difference between SUV values was about 15%. Conclusion: Although the HU measured using this scanner was accurate, accuracy in the conversion from CT data into the 511 keV attenuation coefficients was limited in the bony region. Discrepancy in the transformed attenuation coefficients and SUV values between CT and $^{137}Cs$-based data shown in this study suggests that further optimization of various parameters in data acquisition and processing would be necessary for this scanner.

목적: CT기반 감쇠보정 영상의 표준섭취계수(Standard Uptake Value:SUV)가 $^{137}Cs$ 기반 감쇠보정 영상의 SUV보다 높다. 이 연구에서는 이러한 오차가 생기는 원인을 밝히고자 감쇠계수가 정확하게 변환되었는지 여부를 관심영역 분석을 통하여 평가하였다. 대상 및 방법: Philips GEMINI PET/CT는 X-ray CT (평균 40 keV) 혹은 $^{137}Cs$ (662 keV) 투과영상을 감쇠보정에 이용하는데 GEMINI PET/CT에서 사용하는 각각 선원의 에너지는 511 keV에서 얻은 감쇠계수와 틀리기 때문에 스캐너 내부에 장착된 감쇠계수 변환 알고리즘을 이용하여 511 keV에 해당하는 감쇠계수 값으로 변환된 감쇠지도를 사용하므로 감쇠계수의 변환이 정확하게 이루어졌는지 평가하는 것이 중요하다. 각각의 실험과정은 다음과 같다. 먼저 시스템 성능평가 팬텀 CT 투과 영상을 사용하여 Hounsfield units (HU)값을 측정하였다. 다음으로 NEMA 타원형 ECT 팬텀의 CT, $^{137}Cs$ 투과영상을 얻어 $^{68}Ge$ 투과선원을 장착한 Siemens ECAT EXACT 47 PET 스캐너에서 얻은 팬텀 투과 영상과 비교하여 감쇠계수가 511 keV에 해당하는 감쇠계수로 잘 변환되었는지 측정하였고 Gammex 467 electron density CT 팬텀의 CT, $^{137}Cs$ 투과영상에서 관심영역 분석을 하여 다양한 전자밀도 값에 대한 감쇠계수 변환의 정확성을 평가하였다. 또, 재구성한 영상에 미치는 영향을 평가하기 위하여 정상 및 병적 조직에서 CT, $^{137}Cs$ 기반 감쇠계수와 표준섭취계수를 비교하였다. 결과: CT에서 측정한 HU는 신뢰할 수 있는 값임을 확인하였으나 전자밀도와 원자번호가 큰 영역에서 CT 기반 감쇠계수에 오차가 있었는데 NEMA 타원형 ECT 팬텀 실험결과에 의하면 뼈 영역에서 오차는 11%이었다. 임상데이터에서도 마찬가지로 CT를 이용하여 얻은 감쇠계수가 $^{137}Cs$을 이용하여 얻은 감쇠계수보다 낮았고 전자밀도와 원자번호가 큰 영역에서 오차가 컸다. 그러나, 표준섭취계수는 $^{137}Cs$를 사용하여 감쇠보정을 한 영상의 값이 CT를 이용하여 감쇠보정을 한 값보다 오히려 낮았고 표준섭취계수의 백분율 차이는 $6.6{\sim}52.7%$이었다. 결론: CT의 HU가 정확함에도 불구하고 뼈 영역에서 CT 투과영상을 기반으로 한 감쇠계수의 변환이 부정확하고 CT 및 $^{137}Cs$ 투과영상을 기반으로 얻은 표준 섭취계수에 차이가 있으므로 이에 관한 추가적인 연구가 필요할 것으로 생각한다.

Keywords

References

  1. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed.: Elsevier Science (U.S.A.); 2003. p.84
  2. Zaidi H, Hasegawa B. Determination of the attenuation map in emission tomography. J Nucl Med 2003;44:291-315
  3. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166-79 https://doi.org/10.1053/snuc.2003.127307
  4. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998;25: 2046-53 https://doi.org/10.1118/1.598392
  5. Burger C, Goerres G, Schoenes S, Buck A, Lonn AH, Von Schulthess GK. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 2002;29:922-7 https://doi.org/10.1007/s00259-002-0796-3
  6. Watson CC, Schaefer A, Luk WK, Kirsch CM. Clinical evaluation of single-photon attenuation correction for 3D whole-body PET. IEEE Trans Nucl Sci 1999;46:1024-31 https://doi.org/10.1109/23.790818
  7. Karp JS, Muehllehner G, Qu H, Yan XH. Singles transmission in volume-imaging PET with a $^{137}Cs$ source. Phys Med Biol 1995;40: 929-944. https://doi.org/10.1088/0031-9155/40/5/014
  8. Kim JS, Lee JS, Lee BI, Lee DS, Chung J-K, Lee MC. Performance Characteristics of 3D GSO PET/CT Scanner (Philips GEMINI PET/CT). Korean J Nucl Med 2004;38:318-32
  9. Daube-Witherspoon ME, Matej S, Karp JS, Lewitt RM. Application of the row action maximum likelihood algorithm with spherical basis functions to clinical PET imaging. IEEE Trans Nucl Sci 2001;48:24-30 https://doi.org/10.1109/23.910827
  10. Nehmeh SA, Erdi YE, Pan T, Pevsner A, Rosenzweig KE, Yorke E et al,. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys 2004;31:3179-86 https://doi.org/10.1118/1.1809778
  11. Nakamoto Y, Osman M, Cohade C, Marshall LT, Links JM, Kohlmyer S et al,. PET/CT: comparison of quantitative tracer uptake between germanium and CT transmission attenuationcorrected images. J Nucl Med 2002;43:1137-43
  12. Valk PE, Bailey DL, Townsend DW. Maisey MN. Positron Emission Tomography: Basic Science and Clinical Practice.: Springer (U.S.A); 2002, p.138-41
  13. National Electrical Manufacturers Association: NEMA Standards Publication NU2-2001: Performance Measurements of Positron Emission Tomographs. Rosslyn, VA, National Electrical Manufacturers Association, 2001