DOI QR코드

DOI QR Code

Antioxidative Activities of Temperature-stepwise Water Extracts from Inonotus obliquus

차가버섯의 온도단계별 물추출물의 항산화성 비교

  • Published : 2005.02.01

Abstract

The efficacy of extraction from Inonotus obliquus was examined from the points of antioxidative characteristics and some antioxidative compounds. To enhance the efficient extraction for the effective components from Inonotus obliquus, temperature-stepwise water extraction method was applied. Temperature-stepwise water extracts were prepared for 8 hrs as follows: the first extract at 8$0^{\circ}C$, the second extract from the residue of the first extract at 10$0^{\circ}C$, and the third extract from the residue of the second extract at 12$0^{\circ}C$. Antioxidativeactivities were determined by electron-donating ability of DPPR - free radical, scavenging ability of ABTS$.$$^{+}$radical cation, and by inhibiting ability of linoleic acid autoxidation. In results, the first extract showed the least antioxidant capacity, and the third extract showed the highest antioxidant capacity. The third extract also had the greatest amounts of phenolic compounds and flavonoids. Amounts of phenolic compound from each extract were almost proportional to the radical scavenging activities and linoleic acid autoxidation inhibiting ability (r=0.960∼0.980, regression analysis). Furthermore, the effect of the pooled extract of all three extractions of Inonotus obliquus on the lipid peroxidation reacted with active oxygen species (KO$_2$, $H_2O$$_2$, $.$OH) and metals (Fe$^{2+}$, CU$^{2+}$) was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). The pooled Inonotus obliquus extracts lowered the amounts of TBARS formed by all of the active oxygen species and metals. Especially, these lowering effects were pronounced in the reaction with $.$OH and Fe$^{2+}$. These results suggest that the pooled temperature-stepwise extract from Inonotus obliquus could be potential functional materials to reduce the oxidation of lipids and other compounds induced by free radicals.adicals.

각종 산소 라디칼들이 생체내의 호흡효소계나 산화환원계에서 생성되어 노화와 각종 질병과 유관한 사실이 밝혀져 감에 따라 이들의 소거를 위한 항산화물질에 대한 관심이 높아지고 있는 시점에서, 본 논문에서는 차가버섯의 대표 유효성분인 항산화 성분을 최대로 추출해내기 위한 효과적인 추출법을 시도하고자 실행하였다. 차가버섯 건조분말을 8$0^{\circ}C$에서 8시간 추출한 것을 1차 추출물, 1차 추출 후 그 잔사물에 물을 첨가하여 10$0^{\circ}C$에서 8시간 추출한 것을 2차 추출물, 2차 추출 후 남은 잔사물에 물을 첨가하여 12$0^{\circ}C$에서 8시간 추출한 것을 3차 추출물로 하여서, DPPH자유 라디칼에 대한 전자공여능, ABTS$.$$^{+}$ 라디칼 양이온 소거능, 리놀레산 자동산화 저해 효과를 봄으로서 항산화능을 측정하였다. 결과에서 항산화력은 1차 추출물이 가장 낮았고 3차 추출물이 가장 높았고, 3차 추출물은 페놀 화합물과 플라보노이드 함량이 1차나 2차 추출물보다 유의적으로 많았고, 페놀화합물 합량은 라디칼 소거능 및 리놀레산 자동산화 저해효과와 상관관계가 높은 것(r=0.960∼0.980, regression analysis)으로 나타났다. 또한 각 온도에서의 추출물을 혼합하여 지방산화 촉진인자인 3종의 활성산소종(KO$_2$, $H_2O$$_2$, $.$OH)과 금속 이온(Fe$^{2+}$, Cu$^{2+}$) 존재 하에서 항산화 효과를 TBARS값으로 측정한 결과, 차가추출물이 모두의 경우에서 TBARS값을 낮추었으며 특히 $.$OH와 Fe$^{2+}$ 이온에 대하여 탁월한 항산화능을 보였다. 이상의 결과로 미루어 보아 자유 라디칼로 인해 야기되는 지방을 비롯한 그 산화물에 대하여 3단계 온도 추출법에 의한 차가버섯 추출물은 매우 유효한 항산화제로서 작용할 수 있을 것으로 사료되어진다.

Keywords

References

  1. Yoshhiko O. 1989. SOD and active oxygen modulators. NIHON-IGAKUKAN, Tokyo. p 129-278
  2. Lee SE. 2001. Antioxidative chracteristics of Chamchwi (Aster scaber Thunb.) and identification of the active compounds. PhD Dissertation. Pusan National University. p 1-30
  3. Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14 https://doi.org/10.1042/bj2190001
  4. Maeura Y, Weisburger JH, Williams G. 1984. Dose-dependent reduction of N-2-fluorenylacetamide-induced liver cancer and enhancement of bladder cancer in rats by butylated hydroxytoluene. Cancer Res 44: 1604-1610
  5. Branen AS. 1975. Toxcology and biochemistry of butylated hydroxyanisole and butylatedihydroxytoluene. J Am Oil Chem Soc 1: 59-63
  6. Jialal I, Grundyl S. 1992. Effects of dietary supplementation with alpha-tocopherol on the oxidative modification of low density lipoprotein. J Lipid Res 33: 899-906
  7. Vinson JA, Hontz BA. 1984. Phenol antioxidative index: Comparative antioxidant effectiveness of red and white wines. J Agric Food Chem 43: 401-403
  8. Kahlos K. 1994. XII. Inonotus obliquus (Chaga Fungus): In vitro culture and the production of inotodiol, sterols, and other secondary metabolites. Biotechnology in Agriculure and Forestry 26: 179-198 https://doi.org/10.1007/978-3-642-57970-7_12
  9. Shivrina AN. 1967. Chemical characteristics of compounds extracted from Inonotus obliquus. Chem Abstr 66: 17271z
  10. Kier L. 1961. Triterpenes of Poria obliqua. J Pharm Sci 50: 471-474 https://doi.org/10.1002/jps.2600500605
  11. Kahlos K, Hiltunen R. 1983. Identification of some lanostane type triterpenes from Inonotus obliquus. Acta Pharm Fenn 92: 220-224
  12. Kahlos T, Zhuangas L, Hitunen R. 1987. Antitumor activity of some compounds and fractions from an n-hexene extract of Inonotus obliquus. Acta Pharm Fenn 96: 33-40
  13. Mizno T, Zhuang C, Abe K, Okamoto H, Kito T, Ukai S, Leclerc S, Meijer L. 1999. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus. (Pers.:Fe.) PII (Aphyllophoromycetideae) Int J Med Mushrooms 1: 301-316 https://doi.org/10.1615/IntJMedMushr.v1.i4.20
  14. Ichimura T, Watanave O, Maruyama S. 1998. Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliquq. Biosci Biotechnol Biochem 62: 575-577 https://doi.org/10.1271/bbb.62.575
  15. Saitoh A, Sato C, Niiyama K. 1996. チャガ カバノアナダケ の変異原性 抑制效果に ついて. 道衛硏究報 第46集
  16. 星崎 東明 1998. カバノアナダケ (チャガ). 健全社, オれンジ 文庫. p 38
  17. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1204
  18. Kim JH, Park JH, Park SD, Choi SY, Seong JH, Moon KD. 2002. Preparation and antioxidant activity of health drink with extract powders from safflower (Carthamus tinctorius L.) seed. Korean J Food Sci Technol 34: 617-624
  19. Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76: 69-75 https://doi.org/10.1016/S0308-8146(01)00251-5
  20. Osawa T. 1981. A novel type of antioxidant isolated from leaf was of Eucalypyus leaves. Agric Biol Chem 45: 735-739 https://doi.org/10.1271/bbb1961.45.735
  21. Choi Y, Him M, Shin J, Park J, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Foof Sci Nutr 32: 723-727 https://doi.org/10.3746/jkfn.2003.32.5.723
  22. Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  23. Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Method Enzymol 52: 302-306 https://doi.org/10.1016/S0076-6879(78)52032-6
  24. Cho SY, Han YB, Shin KH. 2001. Screening for antioxidant activity of edible plants. J Korean Soc Food Sci Nutr 30: 133-137
  25. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner AA. 1993. A novel method for measuring antioxidant capacity and its applycation to monitoring the antioxisant status in premature neonates. Clin Sci 24: 407-412
  26. Roberta RE, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  27. Wang MF, Shao Y, Li JG, Zhu NQ, Rngarajan M, Lavoie EJ, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J Agric Food Chem 46: 4869-4873 https://doi.org/10.1021/jf980614b
  28. Kang WW, Kim GY, Park PS, Park MR, Choi SW. 1996. Antioxidative properties of persimmon leaves. Food and Biotechnology 5: 48-53
  29. Kahkonene MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja RK, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47: 3954-3962 https://doi.org/10.1021/jf990146l
  30. Frenkel EN, Huang SW, Kanner J, German JB. 1994. Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsion. J Agric Food Chem 42: 1054-1059 https://doi.org/10.1021/jf00041a001
  31. Banni S, Contini MS, Angioni E, Delana G, Dessi MA, Melis MP, Carta G, Corongiu FP. 1996. A novel approach to study linoleic acid autoxidation: importance of simultaneous detection of the substrate and its derivative oxidation products. Free Radical Research 25: 43-53 https://doi.org/10.3109/10715769609145655
  32. Park YK, Koo MH, Ikegaki M, Contado JL. 1997. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq Biol Technol 40: 97-106
  33. Kandaswami C, Middleton EJr. 1994. Free radical scavenging and antioxidant activity of plant flavonoids. In Free radicals in diagnostic medicine. Armstrong D, ed. Plenum Pree, New York and London. p 351-376
  34. Ilo M, Moriyama Y, Matsumoto N, Takaki N, Fukumoto M. 1985. Inhibition of xanthine oxidase by flavonoids. Agric Biol Chem 49: 2173-2176 https://doi.org/10.1271/bbb1961.49.2173
  35. Nakagawas T, Yokozawa T. 2002. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40: 1745-1750 https://doi.org/10.1016/S0278-6915(02)00169-2
  36. Kim SM, Cho YS, Kim EJ, Bae MJ, Han JP, Lee SH, Sung SK. 1998. Effect of hot water extracts of Salivamiltiorrhiza Bge., Prunus persica Stokes, Angelica gigas Nakai and Pinus strobus on lipid oxidation. J Korean Soc Food Sci Nutr 27: 399-405

Cited by

  1. Effects of Inonotus obliquus Mycelia on the Level of Plasma Glucose and Lipids in Streptozotocin-induced Diabetic Rats vol.33, pp.2, 2005, https://doi.org/10.4489/KJM.2005.33.2.064
  2. Stimulatory Effects of Extracts of Inner Bark from Tabebuia avellanedae on Exercise Endurance Capacity vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1937
  3. Antioxidant Effect of Assai Palm Methanolic Extract vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.967
  4. Physicochemical Characteristics and Antioxidant Activity of Bracken (Pteridium aquilinum Kuhn) in Namhae vol.31, pp.3, 2015, https://doi.org/10.9724/kfcs.2015.31.3.288
  5. Analysis on Antioxidant Activity of the New Developed Waxy Corn Hybrids vol.60, pp.2, 2015, https://doi.org/10.7740/kjcs.2015.60.2.185
  6. Quality Characteristics of Tomato Packaged with Functional Film Applied to Essential Oil of Artemisia Princeps Pampanini vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.766
  7. Physicochemical Characteristics and Antioxidant activity, Antimutagenicity, and Cytotoxicity of Hot-water Extract of Hericium erinaceus vol.28, pp.5, 2012, https://doi.org/10.9724/kfcs.2012.28.5.569
  8. Antioxidant and Anticancer Effects of Water Extract from Pleurotus ostreatus vol.28, pp.1, 2015, https://doi.org/10.9799/ksfan.2015.28.1.060
  9. Antioxidant Activity of Solvent Fraction from Black Garlic vol.39, pp.7, 2010, https://doi.org/10.3746/jkfn.2010.39.7.933
  10. Black Onions Manufactured via the Browning Reaction and Antioxidant Effects of Their Water Extracts vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.310
  11. Bioactive Properties of Mushroom (Agaricus bisporus) Stipe Extracts vol.39, pp.6, 2015, https://doi.org/10.1111/jfpp.12467
  12. Antioxidant Activity According to Each Kind of Natural Plant Pigments vol.24, pp.1, 2011, https://doi.org/10.7732/kjpr.2011.24.1.105
  13. Physiological and Whitening Effects of Morus alba Extracts vol.5, pp.1, 2012, https://doi.org/10.13160/ricns.2012.5.1.046
  14. Quality Characteristics and Antioxidant Activity of Immature Citrus unshiu Vinegar vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.250
  15. Antioxidant activity and hepatic lipids improvement effects of Rubus coreanus in high-fat diet-fed rats vol.38, pp.2, 2015, https://doi.org/10.7853/kjvs.2015.38.2.117
  16. Physicochemical Characteristics and Antioxidant Activities of Luffa cylindrica (L.) Roem vol.41, pp.6, 2012, https://doi.org/10.3746/jkfn.2012.41.6.733
  17. Studies on the Antioxidative Activities and Active Components of the Extracts from Pleurotus ostreatus vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.119
  18. Antioxidant and photoprotective activities of various extracts from the roots of Rumex crispus L. vol.20, pp.5, 2013, https://doi.org/10.11002/kjfp.2013.20.5.684
  19. Antioxidant activity of the Sumaeyaksuk tea extracts prepared with different drying and extract conditions vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.546
  20. Comparison of Biological Activities of Ethanol Extracts of Unripe Fruit of Bitter Melon (Momordica charantia L.) Cultivated in Hamyang, Korea vol.44, pp.11, 2015, https://doi.org/10.3746/jkfn.2015.44.11.1637
  21. Effect of Sweet Persimmon Wine on Alcoholic Fatty Livers in Rats vol.40, pp.11, 2011, https://doi.org/10.3746/jkfn.2011.40.11.1548
  22. Effect of Addition of Allium hookeri on the Quality of Fermented Sausage with Meat from Sulfur Fed Pigs during Ripening vol.34, pp.3, 2014, https://doi.org/10.5851/kosfa.2014.34.3.263
  23. 한약재의 물 추출물이 당대사 관련 효소와 항산화 활성에 관한 연구 vol.37, pp.5, 2008, https://doi.org/10.3746/jkfn.2008.37.5.542
  24. 복분자 추출물의 항산화활성과 가열 돈육의 산화 억제 효과 vol.37, pp.7, 2008, https://doi.org/10.3746/jkfn.2008.37.7.820
  25. 흑마늘의 항산화 활성 vol.37, pp.8, 2008, https://doi.org/10.3746/jkfn.2008.37.8.965
  26. 일당귀 에탄올 추출물의 항산화 효과 vol.19, pp.1, 2005, https://doi.org/10.5352/jls.2009.19.1.117
  27. 송이(Tricholoma matsutake Sing.)의 ABTS Radical 소거능과 암세포 생장 억제효능의 검색 vol.38, pp.5, 2005, https://doi.org/10.3746/jkfn.2009.38.5.555
  28. 마늘과 한약재 추출물의 혼합급이가 알코올 투여에 의한 간기능 및 지질대사에 미치는 영향 vol.38, pp.5, 2009, https://doi.org/10.3746/jkfn.2009.38.5.561
  29. 유기산 전처리 후 수열처리가 왕겨 추출물의 항산화능에 미치는 영향 vol.38, pp.10, 2009, https://doi.org/10.3746/jkfn.2009.38.10.1392
  30. 차가버섯의 균사체 및 세포외다당체의 생산조건과 면역활성 vol.19, pp.11, 2005, https://doi.org/10.5352/jls.2009.19.11.1617
  31. 마늘과 한약재 복합물의 항산화 활성 및 고콜레스테롤 급이 흰쥐의 간장 지질 함량에 미치는 영향 vol.19, pp.12, 2005, https://doi.org/10.5352/jls.2009.19.12.1769
  32. 채취시기에 따른 미더덕의 부위별 항산화 활성 및 ACE 저해 활성 vol.39, pp.3, 2005, https://doi.org/10.3746/jkfn.2010.39.3.331
  33. 옻씨 추출물의 항산화 활성과 옻씨 추출물을 첨가한 발효유의 품질특성 vol.23, pp.6, 2005, https://doi.org/10.11002/kjfp.2016.23.6.825
  34. 상황버섯과 영지버섯 차류 제품의 이화학적 특성 및 항산화능 vol.24, pp.1, 2005, https://doi.org/10.11002/kjfp.2017.24.1.153
  35. 참나무 수종별 톱밥재배에 따른 표고의 항산화 특성 vol.45, pp.2, 2017, https://doi.org/10.4489/kjm.20170015
  36. Malus melliana 에탄올 추출물의 항산화 및 항염증 활성 vol.27, pp.7, 2017, https://doi.org/10.5352/jls.2017.27.7.783
  37. H2O2에 의해 유도된 HDF 세포 손상에 대한 그라비올라 추출물의 항산화 및 세포 보호 효과 vol.34, pp.3, 2017, https://doi.org/10.12925/jkocs.2017.34.3.568
  38. 매실 순차분획물의 용매별 항산화 활성 및 α-glucosidase 억제 효과 vol.29, pp.10, 2005, https://doi.org/10.5352/jls.2019.29.10.1111
  39. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2005, https://doi.org/10.9799/ksfan.2020.33.1.064
  40. Antioxidant Activity and Quality Characteristics of Cookies Prepared with Cacao Bean Husk (Theobroma cacao Linn.) Powder vol.50, pp.1, 2021, https://doi.org/10.3746/jkfn.2021.50.1.45
  41. Study on Antioxidant Activity and Cytotoxicity to A549 Cells of Korean Aronia Fruit Extracts vol.31, pp.3, 2021, https://doi.org/10.17495/easdl.2021.6.31.3.163
  42. Retraction to: Inhibitory activity against biological enzyme and anti-microbial activity of phenolics from Sambucus sieboldiana var. pendula Leaves vol.64, pp.2, 2005, https://doi.org/10.3839/jabc.2021.063
  43. Antioxidant Activities and Quality Characteristic of Jeung-Pyun with the Addition of Loquat Leaf Powder vol.50, pp.10, 2021, https://doi.org/10.3746/jkfn.2021.50.10.1065
  44. Comprehensive comparison of nutritional constituents and antioxidant activity of cultivated ginseng, mountain-cultivated ginseng, and whole plant parts of mountain-cultivated ginseng vol.64, pp.4, 2005, https://doi.org/10.3839/jabc.2021.064