Characterization and Culture Optimization of Regiospecific Cyclosporin Hydroxylation in Rare Actinomycetes Species

  • Published : 2005.02.01

Abstract

Abstract Cyclosporins are a family of clinically-important immunosuppressive cyclic peptides produced by Tolypocladium inflatum. The structural modification of cyclosporins via hydroxylation at various positions of N-methyl leucines in cyclosporin A leads to a dramatic change of their bioactive spectra. Among over 100 soil actinomycetes screened, two actinomycetes species, Sebekia benihana and Pseudonocardia autotrophica, were identified to contain superior cyclosporin A hydroxylation activities. A HPLC-based cyclosporin A hydroxylation assay revealed that each strain possesses distinctive hydroxylation specificity and regiospecificity; mono-hydroxylation at the 4th N-methyl leucine of cyclosporin A by S. benihana, and di-hydroxylations at both 4th and 9th N-methyl leucines of cyclosporin A by P. autotrophica. The conversion yields for cyclosporin A hydroxylation by both S. benihana and P. autotrophica were significantly improved from less than 10% and 18% up to 58% and 45%, respectively, in the optimized culture containing molybdenum with 0.05 g/l of cyclosporin A concentration. An ancymidol-specific inhibition of cyclosporin hydroxylation also suggested that the regiospecific cyclosporin hydroxylation might be catalyzed by a putative cytochrome P450 mono-oxygenase enzyme.

Keywords

References

  1. Cifkova, R. and H. Hallen. 2001. Cyclosporin-induced hypertension. J. Hypertens. 19: 2283- 2285 https://doi.org/10.1097/00004872-200112000-00025
  2. Copeland, K. R., J. A. Thliveris, and R. W. Yatscoff. 1990. Toxicity of cyclosporine metabolites. Ther. Drug Manit. 12: 525- 532 https://doi.org/10.1097/00007691-199011000-00003
  3. Hozurni, Y., T. Irnaizurni, and S. Kondo. 1994. Effect of cyclosporin on hair-existing area of nude mice. J. Dermatol. Sci. 7: 33- 38 https://doi.org/10.1016/0923-1811(94)90033-7
  4. Jung, W.-S., E.-S. Kim. H.-Y. Kang, C.-Y. Choi, D. H. Sherman, and Y. J. Yoon. 2003. Site-directed mutagenesis on putative macrolactone ring size determinant in the hybrid pikromycin-tylosin polyketide synthase. J. Microbiol. Biotechnol. 13: 823- 827
  5. Kendrew, S. G., D. A. Hopwood, and E. N. Marsh. 1997. Identification of a monooxygenase from Streptomyces coelicotor A3(2) involved in biosynthesis of actinorhodin: Purification and characterization of the recombinant enzyme. J. Bacteriol. 179: 4305- 4310 https://doi.org/10.1128/jb.179.13.4305-4310.1997
  6. Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819- 822
  7. Kim, C.-Y., H.-J. Park, Y. J. Yoon, H.-Y. Kang, and E.-S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089- 1092
  8. Kim, S.-N., H.-J. Ahn, M.-K. Kim, J.-I. Kim, J.-H. Kim, C.-W. Lee, M.-H. Lee, C.-D. Kim, H.-S. Cho, H.-S. Kim, M.-H. Jung, and S.-J. Kim. 2003. Nonimmunosuppressive [gamma-hydroxy-methylleucine4] cyclosporin A, hair growth stimulator and external composition for skin using the same USP 6521595.
  9. Korea Patent 10-2000-0067585
  10. Kuhnt, M., F. Bitsch, J. France, H. Hofmann, J. J. Sanglier, and R. Traber. 1996. Microbial biotransformation products of cyclosporin A. J. Antibiot. 49: 781- 787 https://doi.org/10.7164/antibiotics.49.781
  11. Liu, W. T., K. Marat, Y. Ren, R. T. Eng, and P. Y. Wong. 1998. Structural characterization of two novel oxidative derivatives of cyclosporine generated by a chemical method. Clin. Biochem. 31: 173-180 https://doi.org/10.1016/S0009-9120(98)00014-9
  12. Maurer, G., H. R. Loosli, E. Schreier, and B. Keller. 1984. Disposition of cyclosporine in several animal species and man. I. Structural elucidation of its metabolites. Drug. Metab. Dispos. 12: 120- 126
  13. Moussaif, M., P. Jacques, P. Schaarwachter, H. Budzikiewicz, and P. Thonart. 1997. Cyclosporin C is the main antifungal compound produced by Acremonium luzulae. Appl. Environ. Microbiol. 63: 1739- 1743
  14. Perkins, M. E., T. W. Wu, and S. M. Le Blancq. 1998. Cyclosporin analogs inhibit in vitro growth of Cryptosporidium parvum. Antimicrob. Agents Chemother. 42: 843- 848
  15. Settaf, A., J. Gugenheim, M. K. Lahlou, M. Gigou, M. Capron-Laudereau, B. Charpentier, M. Reynes, F. Lokiec, and H. Bismuth. 1989. Cyclosporin, toxicity and efficacy in rejection of liver allografts in the rat. J. Chir. 126: 431- 437
  16. Sewing, K. E., U. Christians, K. Kohlhaw, H. Radeke, S. Strohmeyer, R. Kownatzki, J. Budniak, R. Schottmann, J. S. Bleck, V. M. Almeida, et al. 1990. Biologic activity of cyclosporine metabolites. Transplant. Proc. 22: 1129- 1134
  17. Streblow, D. N., M. Kitabwalla, M. Malkovsky, and C. D. Pauza. 1998. Cyclophilin a modulates processing of human immunodeficiency virus type 1 p55Gag: Mechanism for antiviral effects of cyclosporin A. Virology 245: 197- 202 https://doi.org/10.1006/viro.1998.9155
  18. Tongpim, S. and M. A. Pickard. 1999. Cometabolic oxidation of phenanthrene to phenanthrene trans-9, 10-dihydrodiol by Mycobacterium strain Sl growing on anthracene in the presence of phenanthrene. Can. J. Microbiol. 45: 369- 376 https://doi.org/10.1139/cjm-45-5-369
  19. Wenger, R. M. 1990. Structures of cyclosporine and its metabolites. Transplant. Proc. 22: 1104- 1108
  20. White, D. J., A. M. Plumb, G. Pawelec, and G. Brons. 1979. Cyclosporin A: An immunosuppressive agent preferentially active against proliferating T cells. Transplantation 27: 55-58 https://doi.org/10.1097/00007890-197901000-00014
  21. Yamamoto, S. and R. Kato. 1994. Hair growth-stimulating effects of cyclosporin A and FK506, potent immunosuppressants. J. Dermatol. Sci. 7: 47- 54 https://doi.org/10.1016/0923-1811(94)90035-3
  22. Zhao, D. X., M. Beran, J. Kozova, and Z. Rehacek. 1991. Formation of cyclosporins by Tolypocladium inflatum. Folia Microbiol. 36: 549- 556 https://doi.org/10.1007/BF02884035