Comparison of Photorhabdus luminescens and Vibrio fischeri lux Fusions to Study Gene Expression Patterns

  • MITCHELL, ROBERT J. (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST)) ;
  • AHN, JOO-MYUNG (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST)) ;
  • GU, MAN BOCK (National Research Laboratory on Environmental Biotechnology, Depart. Environmental Science and Engineering, Institute of Science and Technology (GIST))
  • Published : 2005.02.01

Abstract

A comparison of promoter fusions with the luxCDABE genes from Vibrio fischeri and Photorhabdus luminescens was made using promoters from several genes (katG, sodA, and pqi-5) of E. coli that are responsive to oxidative damage. The respective characteristics, such as the basal and maximum bioluminescence and the relative bioluminescence, were compared. E. coli strains carrying fusions of the promoters to P. luminescens lux showed higher basal and maximally induced bioluminescent levels than strains carrying the same promoter fused to the luxCDABE genes from V. fischeri. The sensitivities between the strains were similar, regardless of the luciferase used, but lower response ratios were seen from strains harboring the P. luminescens lux fusions. Furthermore, using the two katG::lux fusion strains, the bioluminescence from the P. luminescens lux fusion strain, DK1, was stable after reaching a maximum, while that of strain DPD2511 decreased very rapidly due to substrate limitation.

Keywords

References

  1. Almashanu, S., A. Tuby, R. Hadar, R. Einy, and J. Kuhn. 1995. Formation of active bacterial luciferase between interspecific subunits in vivo. J. Biolumin. Chemilumin. 10: 157-167 https://doi.org/10.1002/bio.1170100304
  2. Baldwin, T. O., J. H. Devine, R. C. Heckel, J. W. Lin, and G. S. Shadel. 1989. The complete nucleotide sequence ofthe lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence. J. Biolumin. Chemilumin. 4: 326- 341 https://doi.org/10.1002/bio.1170040145
  3. Belkin, S., D. R. Srnulski, A. C. Vollmer, T. K. Van Dyk, and R. A. LaRossa. 1996. Oxidative stress detection with Escherichia coli harboring a katG':lux fusion. Appl. Environ. Microbiol. 62: 2252-2256
  4. Cho, J. C. and S. J. Kim. 1999. Green tluorescent proteinbased direct viable count to verify a viable but nonculturable state of Salmonella typhi in environmental samples. J. Microbiol. Methods 36: 227- 235 https://doi.org/10.1016/S0167-7012(99)00038-X
  5. Davidov, Y., R. Rozen, D. R. Smulski, T. K. Van Dyk, A. C. Vollmer, D. A. Elsernore, R. A. LaRossa, and S. Belkin. 2000. Improved bacterial SOS promoter::lux fusions for genotoxicity detection. Mutat. Res. 466: 97-107 https://doi.org/10.1016/S1383-5718(99)00233-8
  6. Delong, E. F., D. Steinhauer, A. Israel, and K. H. Nealson. 1987. Isolation of the lux genes from Photobacterium leiognathi and expression in Escherichia coli. Gene 54: 203- 210 https://doi.org/10.1016/0378-1119(87)90488-4
  7. Demple, B. 1991. Regulation of bacterial oxidative stress genes. Annu. Rev. Genet. 25: 315- 337 https://doi.org/10.1146/annurev.ge.25.120191.001531
  8. Engebrecht, J. and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81: 4154- 4158 https://doi.org/10.1073/pnas.81.13.4154
  9. Frackrnan, S., M. Anhalt, and K. H. Nealson. 1990. Cloning, organization, and expression of the bioluminescence genes of Photorhabdus luminescens. J. Bacteriol. 172: 5767- 5773 https://doi.org/10.1128/jb.172.10.5767-5773.1990
  10. Greenberg, J. T., P. Monach, J. H. Chou, P. D. Josephy, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87: 6181-6185 https://doi.org/10.1073/pnas.87.16.6181
  11. Hakkila, K, M. Maksimow, M. Karp, and M. Virta. 2002. Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal. Biochem. 301: 235- 242 https://doi.org/10.1006/abio.2001.5517
  12. Justus, T. and S. M. Thomas. 1999. Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. Mutagenesis 14: 351- 356 https://doi.org/10.1093/mutage/14.4.351
  13. Korbashi, P., R. Kohen, J. Katzhendler, and M. Chevion. 1986. Iron mediates paraquat toxicity in Escherichia coli. J. Biol. Chem. 261: 12472- 12476
  14. Lee, H. J. and M. B. Gu. 2003. Construction of a sodA::luxCDABE fusion Escherichia coli: Comparison with a katG fusion strain through their responses to oxidative stresses. Appl. Microbiol. Biotechnol. 60: 577- 580 https://doi.org/10.1007/s00253-002-1168-4
  15. Lee, H. Y, S. H. Choi, and M. B. Gu. 2003. Response of bioluminescent bacteria to sixteen azo dyes. Biotechnol. Bioprocess Eng. 8: 101- 105 https://doi.org/10.1007/BF02940264
  16. Manukhov, I. V., G. E. Eroshnikov, M. Y. Vyssokikh, and G. B. Zavilgelsky. 1999. Folding and refolding of thermolabile and thermostable bacterial luciferases: The role of DnaKJ heat-shock proteins. FEBS Lett. 448: 265- 268 https://doi.org/10.1016/S0014-5793(99)00384-1
  17. Meighen, E. A. 1991. Molecular biology of bacterial bioluminescence. Microbial. Rev. 55: 123- 142
  18. Meighen, E. A. and P. V. Dunlap. 1993. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv. Microbial Physiol. 34: 2- 58
  19. Min, J. and M. B. Gu. 2003. Genotoxicity assay using chromosomally-integrated bacterial recA::Lux. J. Microbiol. Biotechnol. 13: 99- 103
  20. Mitchell, R. J. and M. B. Gu. 2004. An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl. Microbiol. Biotechnol. 64: 46- 52 https://doi.org/10.1007/s00253-003-1418-0
  21. Park, J. E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349- 353
  22. Pazzagli, M., J. H. Devine, D. O. Peterson, and T. O. Baldwin. 1992. Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells. Anal. Biochem. 204: 315- 323 https://doi.org/10.1016/0003-2697(92)90245-3
  23. Premkurnar, J. R., R. Rosen, S. Belkin, and O. Lev. 2002. Sol-gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate gels. Anal. Chim. Acta 462: 11- 23 https://doi.org/10.1016/S0003-2670(02)00301-X
  24. Rogowsky, P. M., T. J. Close, J. A. Chimera, J. J. Shaw, and C. I. Kado. 1987. Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58. J. Bacteriol. 169: 5101-5112 https://doi.org/10.1128/jb.169.11.5101-5112.1987
  25. Rupani, S. P, M. B. Gu, K. B. Konstantinov, P. S. Dhurjati, T. K. Van Dyk, and R. A. LaRossa. 1996. Characterization of the stress response of a bioluminescent biological sensor in batch and continuous cultures. Biotechnol Prog. 12: 387-392 https://doi.org/10.1021/bp960015u
  26. Szittner, R. and E. Meighen. 1990. Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J. Biol. Chem. 265: 16581-16587
  27. Stewart, G. S. A. B. and P. Williams. 1992. lux Genes and the applications of bacterial bioluminescence. J. Genet. Microbiol. 138: 1289- 1300 https://doi.org/10.1099/00221287-138-7-1289
  28. Storz, G., S. B. Farr, and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6: 363- 368 https://doi.org/10.1016/0168-9525(90)90278-E
  29. Tyulkova, N. A. and T. P. Sandalova. 1996. Comparative study of temperature effects on bacterialluciferase. Biochemistry (Moscow) 61: 205- 214
  30. Van Dyk, T. K., E. J. DeRose, and G. E. Gonye. 2001. LuxArray, a high-density, genomewide transcription analysis of Escherichia coli using bioluminescent reporter strains. J. Bacteriol. 183: 5496- 5505 https://doi.org/10.1128/JB.183.19.5496-5505.2001
  31. Van Dyk, T. K and R. A. Rosson. 1998. 102: 85- 95. In R. A LaRossa (ed.), Methods in Molecular Biology: Bioluminescence Methods and Protocols. Humana Publishing, Towowa, NJ, U.S.A.
  32. Van Dyk, T. K., Y. Wei, M. K. Hanafey, M. Dolan, M. J. Reeve, J. A. Rafalski, L. B. Rothman-Denes, and R. A. LaRossa. 2001. A genomic approach to gene fusion technology. Proc. Natl Acad. Sci. USA 98: 2555- 2560 https://doi.org/10.1073/pnas.041620498
  33. Winson, M. K, S. Swift, P. J. Hill, C. M. Sims, G. Griesrnayr, B. W. Bycroft, P Williams, and G. S. Stewart. 1998. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett. 163: 193- 202 https://doi.org/10.1111/j.1574-6968.1998.tb13045.x
  34. Xi, L. and S. C. Tu. 1993. Construction and characterization of hybrid luciferases coded by lux genes from Photorhabdus luminescens and Vibrio fischeri. Photochem. Photobiol. 57: 714-719 https://doi.org/10.1111/j.1751-1097.1993.tb02943.x