A Direct Approach for Finding Functional Lipolytic Enzymes from the Paenibacillus polymyxa Genome

  • JUNG, YEO-JIN (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • KIM, HYUNG-KWOUN (Division of Biotechnology, The Catholic University of Korea) ;
  • KIM, JIHYUN F. (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • PARK, SEUNG-HWAN (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • OH, TAE-KWANG (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • LEE, JUNG-KEE (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2005.02.01

Abstract

Abstract A direct approach was used to retrieve active lipases from Paenibacillus polymyxa genome databases. Twelve putative lipase genes were tested using a typical lipase sequence rule built on the basis of a consensus sequence of a catalytic triad and oxyanion hole. Among them, six genes satisfied the sequence rule and had similarity (about 25%) with known bacterial lipases. To obtain the six lipase proteins, lipase genes were expressed in E. coli cells and lipolytic activities were measured by using tributyrin plate and pnitrophenyl caproate. One of them, contig 160-26, was expressed as a soluble and active form in E. coli cell. After purifying on Ni-NTA column, its detailed biochemical properties were characterized. It had a maximum hydrolytic activity at $30^{\circ}C$ and pH 7- 8, and was stable up to $40^{\circ}C$ and in the range of pH 5- 8. It most rapidly hydrolyzed pNPC$_6$ among various PNPesters. The other contigs were expressed more or less as soluble forms, although no lipolytic activities were detected. As they have many conserved regions with lipase 160-26 as well as other bacterial lipases throughout their equence, they are suggested as true lipase genes.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Ay, J., M. Hahn, K. Decanniere, K. Piotukh, R. Borriss, and U. Heinemann. 1998. Crystal structures and properties of de novo circularly permuted 1,3-1,4-beta-glucanases. Proteins 30: 155-167 https://doi.org/10.1002/(SICI)1097-0134(19980201)30:2<155::AID-PROT5>3.0.CO;2-M
  3. Bell, P. J., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283- 2291 https://doi.org/10.1099/00221287-148-8-2283
  4. Bomscheuer, U. T. 2002. Methods to increase enantioselectivity of lipases and esterases. Curr. Opin. Biotechnol. 13: 543-547 https://doi.org/10.1016/S0958-1669(02)00350-6
  5. Bomscheuer, U. T, C. Bessler, R. Srinivas, and S. H. Krishna. 2002. Optimizing Iipases and related enzymes for efficient application. Trends Biotechnol. 20: 433- 437 https://doi.org/10.1016/S0167-7799(02)02046-2
  6. Feller, G., M. Thiry, and C. Gerday. 1991. Nucleotide sequence of the lipase gene lip2 from the antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381- 388 https://doi.org/10.1089/dna.1991.10.381
  7. Jaeger, K. E., B. W. Dijkstra, and M. T Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315- 351 https://doi.org/10.1146/annurev.micro.53.1.315
  8. Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390- 397 https://doi.org/10.1016/S0958-1669(02)00341-5
  9. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  10. Jaeger, K. E., T. Eggert, A. Eipper, and M. T. Reetz. 2001. Directed evolution and the creation of enantioselective biocatalysts. Appl. Microbiol. Biotechnol. 55: 519- 530 https://doi.org/10.1007/s002530100643
  11. Kim, H. K., H. J. Choi, M. H. Kim, C. B. Sohn, and T. K. Oh. 2002. Expression and characterization of $Ca^{2+}$ independent lipase from Bacillus pumilus B26. Biochim. Biophys. Acta 1583: 205- 212 https://doi.org/10.1016/S1388-1981(02)00214-7
  12. Kim, H. K., S. Y Park, J. K. Lee, and T. K. Oh. 1998. Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci. Biotechnol. Biochem. 62: 66-71 https://doi.org/10.1271/bbb.62.66
  13. Kim, J. F., C. Kim, H. Jeong, S.-Y. Park, Y.-K. Park, S. K. Choi, C.-G. Hur, T. K. Oh, Y. H. Moon, C. S. Park, and S.-H. Park. 2002. Secrets of the underground lifestyle of the plant-probiotic bacterium Paenibacillus polymyxa E681 revealed from its genomic sequence, p. 158. In: Proc. 2002 Int. Meet. Fed. Kor. Microbiol. Soc. SL535
  14. Jung, W. H., H. K. Kim, C. Y. Lee, and T. K. Oh. 2002. Biochemical properties and substrate specificity of the lipase from Staphylococcus au reus B56. J. Microbiol. Biotechnol. 12: 25- 30
  15. Lopez-Camacho, C., J. Salgado, J. L. Lequerica, A. Madarro, E. Ballestar, L. Franco, and J. Polaina. 1996. Amino acid substitutions enhancing thermo stability of Bacillus polymyxa beta-glucosidase A. Biochem. J. 314: 833- 838 https://doi.org/10.1042/bj3140833
  16. Kim, H. K., S. Y. Park, and T. K. Oh. 1997. Purification and partial characterization of thermostable carboxyl esterase from Bacillus stearothermophilus L1. J. Microbiol. Biotechnol. 7:37-42
  17. Kim, M. H., H. K. Kim, B. C. Oh, and T. K. Oh. 2000. The amino acidic substitution of glycine 275 by glutamate (G275E) in lipase of Bacillus stearothermophilus affects its catalytic activity and enantio- and chain length specificity. J. Microbiol. Biotechnol. 10: 764- 769
  18. Mulder, N. J., R. Apweiler, T. K. Attwood, et al. 2003. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res. 31: 315- 318 https://doi.org/10.1093/nar/gkg046
  19. Oh, B. C., H. K. Kim, M. H. Kim, J. K. Lee, and T. K. Oh. 2000. Staphylococcus haemolyticus lipase; high-level expression in Escherichia coli and activation of nonionic detergent. J. Microbiol. Biotechnol. 10: 656- 662
  20. Pandey, A., S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol. 1999. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 29: 119- 131
  21. Park, S.-H., J. F. Kim, C. Kim, H. Jeong, S.-K. Choi, C.-G. Hur, T. K. Oh, J. J. Kim, and C. S. Park. 2002. Genome sequencing and analysis of Paenibacillus polymyxa E681, a plant-pro biotic bacterium. p. 68. In: 9th Int. Symp. Genet. Indust. Microorg. S18. p. 68
  22. Peist, R., A Koch, P. Bolek, S. Sewitz, T. Kolbus, and W. Boos. 1997. Characterization of the aes gene of Escherichia coli encoding an enzyme with esterase activity. J. Bacteriol. 179: 7679-7686 https://doi.org/10.1128/jb.179.24.7679-7686.1997
  23. Peterson, J. D., L. A Umayam, T. Dickinson, E. K. Hickey, and O. White. 2001. The comprehensive microbial resource. Nucleic Acids Res. 29: 123-125 https://doi.org/10.1093/nar/29.1.123
  24. Reddy, P. G., R Allon, M. Mevarech, S. Mendelovitz, y. Sato, and D. L. Gutnick. 1989. Cloning and expression in Escherichia coli of an esterase-coding gene from the oildegrading bacterium Acinetobacter calcoaceticus RAG-l. Gene 76: 145- 152 https://doi.org/10.1016/0378-1119(89)90016-4
  25. Reetz, M. T. 2002. Lipases as practical biocatalysts. Curr. Opin. Chem. Biol. 6: 145- 150 https://doi.org/10.1016/S1367-5931(02)00297-1
  26. Sanz-Aparicio, J., J. A Hermoso, M. Martinez-Ripoll, J. L. Lequerica, and J. Polaina. 1998. Crystal structure of beta-glucosidase A from Bacillus polymyxa: Insights into the catalytic activity in family l glycosyl hydrolases. J. Mol. Biol. 275: 491-502 https://doi.org/10.1006/jmbi.1997.1467
  27. Tindall, B. J. 2000. What is the type species of the genus Paenibacillus? Request for an opinion. Int. J. Syst. Evol. Microbiol. 50: 939- 940 https://doi.org/10.1099/00207713-50-2-939