DOI QR코드

DOI QR Code

Thermal residual stress behavior in fiber metal laminates

섬유금속적층판의 경화 시 발생하는 열 잔류응력에 관한 연구

  • 김세영 (한국항공대학교 항공재료공학과) ;
  • 최원종 (한국항공대학교 항공재료공학과) ;
  • 박상윤 (한국항공대학교 항공재료공학과) ;
  • 문초록 (한국항공대학교 항공재료공학과)
  • Published : 2005.06.01

Abstract

Due to mismatch of thermal expansion coefficients between aluminum sheet and glass/epoxy sheet, thermal residual stresses generally appear in the FML. These stresses will affect the yield and fatigue strength of the FML. The numerically determined residual stresses in the Fiber-Metal-Laminates(FML) have been compared to the residual stresses measured from the curvature and tensile test methods. These two experimental methods have been developed for assessing the influence of residual stress in FML. Post-stretching process has been applied to remove the thermal residual stress and reverse the stress distribution. After post-stretching process, the residual stress has been measured from experiments. The results obtained show that analytical and experimental data are well agreed. The thermal residual stress can be removed by post-stretching process and it will increase the yield strength of FML.

섬유금속적층판(Fiber Metal Laminates, 이하 FML)에서 알루미늄과 유리섬유/에폭시 복합재료 사이의 열팽창 계수의 차이는 경화공정 시 FML내부에 열 잔류응력을 남기게 되며, 이러한 열 잔류응력은 FML의 피로특성과 항복강도에 영향을 주게 된다. 잔류응력을 예측하기 위해 두 가지 실험법이 제안 되었으며, 이론식을 통해 그 결과를 예측하고, 실제 실험을 수행하여 그 값을 확인 하였다. 또한, 열 잔류응력의 제거 및 응력의 역전을 위하여 후-인발 가공이 수행 되었으며, 가공 이후 발생한 FML내의 잔류응력이 측정 되었다. 예측된 열 잔류응력 결과와 실험을 통한 값이 일치함을 보이며, 후-인발 가공을 통하여 열 잔류응력 제거 및 항복강도의 증가가 발생하였다.

Keywords

References

  1. 김성열, 이수용, 박정선, '복합재료 항공기 동체 부품 설계,' 한국항공우주학회지 제30권 제 1호, 2002, pp. 65-74
  2. Vlot, A. and Gunnink, J. W., 'Fiber Metal Laminates An Introduction', Kluwer Academic Publishers, 2001
  3. A. Asundi and Alta Y.N. Choi, 'Fiber metal laminates- An advanced material for future aircraft', Journal of materials processing technology 63, 1997, pp. 384-394 https://doi.org/10.1016/S0924-0136(96)02652-0
  4. Vogelesang L.B. and Vlot, A., 'Development of fibre metal laminates for advanced aerospace structure', Journal of materials processing technology 103, 2000, pp. 1-5 https://doi.org/10.1016/S0924-0136(00)00411-8
  5. 'Structural Materials Handbook', Volume 1: Polymer Composites, Structures and Mechanisms Division European Space Research and Technology Centre, 1994, pp. 46
  6. M. Gigliotti, M. R. Wisnom and K. D. Potter 'Development of curvature during the cure of AS4/8552 [0/90] unsymmetric composite plates', Composites Science and Technology, 63, 2003, pp. 187-197 https://doi.org/10.1016/S0266-3538(02)00195-1
  7. Johnston A. 'An integrated model of the development of process induced deformation in autoclave processing of composite structures', PhD thesis, University of British Columbia, 1997
  8. N. Takeda, L.N. McCartney and S. Ogihara, 'The application of a ply-refinement technique to the analysis of microscopic deformation in interlaminar-toughened laminates with transverse cracks', Composites Science and Technology 60, 2000, pp. 231-240 https://doi.org/10.1016/S0266-3538(99)00121-9
  9. Gere and Timoshenko, 'Mechanics of materials', PWS-KENT, Boston, 1990, pp. 73-81
  10. Carl T. 'Herakovich Mechanics of fibrous composites', John Willey & Sons, N.Y., 1998, pp. 112-184

Cited by

  1. Evaluation of tension-compression and tension-tension fatigue life of woven fabric glass/epoxy laminate composites used in railway vehicle vol.12, pp.5, 2011, https://doi.org/10.1007/s12541-011-0108-6
  2. A Study on Improvement of Fatigue Life for Woven Glass Fabric/Epoxy Laminate Composite Applied to Railway Vehicle vol.654-656, pp.1662-9752, 2010, https://doi.org/10.4028/www.scientific.net/MSF.654-656.2583