Synergistic Effects of Low Dose Gamma Irradiation and Growth Regulators on Seed Germination, Growth and Photosynthesis in Rice (Oryza sativa L.)

벼의 종자 발아와 생육 및 광합성에 대한 저선량 감마선과 생장조절물질의 상승작용 효과

  • Baek Myung-Hwa (Radiation Application Research Team, Korea Atomic Energy Research Institute) ;
  • Chung Byung Yeoup (Radiation Application Research Team, Korea Atomic Energy Research Institute) ;
  • Kim Jin-Hong (Radiation Application Research Team, Korea Atomic Energy Research Institute) ;
  • Wi Seung Gon (Radiation Application Research Team, Korea Atomic Energy Research Institute) ;
  • Kim Jae-Sung (Radiation Application Research Team, Korea Atomic Energy Research Institute) ;
  • Lee In-Jung (Department of Agronomy, Kyungpook National University)
  • 백명화 (한국원자력연구소 방사선이용연구부) ;
  • 정병엽 (한국원자력연구소 방사선이용연구부) ;
  • 김진홍 (한국원자력연구소 방사선이용연구부) ;
  • 위승곤 (한국원자력연구소 방사선이용연구부) ;
  • 김재성 (한국원자력연구소 방사선이용연구부) ;
  • 이인중 (경북대학교 농학과)
  • Published : 2005.03.01

Abstract

To investigate the synergistic effects of low dose gamma irradiation and growth regulators on the growth and photosynthesis in rice (Oryza sativa L.), laboratory and greenhouse experiments were conducted using 4-year-old rice seeds. In the laboratory experiment, the germination rate was increased in 0.001 ppm IBA treatment, showing the synergistic effect of gamma irradiation and growth regulators. The seedling growth was increased by treatment of GA₃ and IBA, the irradiated groups having higher than the non-irradiated ones. Particularly, it was remarkable in 0.001 ppm IBA. In greenhouse experiment, seedling growth was increased in response to a combination of gamma irradiation and 0.001 ppm IBA. Effective quantum yield of PSⅡ(Ф/sub PSⅡ/) and photochemical quenching (qP) were increased, while non-photochemical quenching (qN) was decreased by 0.001 ppm IBA. A synergistic effect of gamma irradiation and IBA was only found in seedling growth. The present results suggest that low dose gamma irradiation and growth regulator could synergistically stimulate seedling growth.

벼의 유묘 생육과 광합성 효율에 대한 저선량 방사선과 생장조절물질 간의 상승작용 효과를 확인하기 위해 4년 된 종자로 기내실험과 온실실험을 수행하였다. 기내실험에서 관찰한 종자 발아의 경우 방사선을 조사한 IBA 0.001 ppm 처리구에서 가장 높은 값을 보였다. 또한, 파종 6일 후 측정한 유묘 생육은 방사선 무 조사구보다 방사선을 조사한 GA₃와 IBA 처리구에서 대체로 높은 값을 보였으며, 그 중 IBA 0.001 ppm 처리에서 저선량 방사선과 생장조절물질간의 유의성 있는 상승작용 효과를 확인 할 수 있었다. 저선량 방사선을 조사 한 후 IBA 0.001 ppm을 처리하여 관찰한 온실 실험에서도 유묘 생육에서의 상승작용 효과를 확인할 수 있었다. 광합성 효율을 확인하기 위해 측정한 엽록소 형광은 생장조절물질에 의해서만 차이를 보여, IBA 처리에 의해 광계 2의 양자 수율을 나타내주는 Ф/sub PSⅡ/와 광화학적 소멸을 나타내는 qP는 증가하였고 비광화학적 소멸을 나타내는 형광지표인 qN은 감소하였다. 이러한 결과를 통해 저선량 방사선을 조사한 후 생장조절물질을 처리하였을 때 벼의 종자 발아와 더불어 생육이 두 요인간의 상승작용 효과로 촉진됨을 확인할 수 있었다.

Keywords

References

  1. 강점순, 최영환, 손병구, 안종길, 조정래. 2000. 박 종자의 발아촉진을 위한 Hydroprimg 처리 효과. 한국원예과학기술지. 41:559-564
  2. 김재성, 이영복. 1998. 저선량 전리방사사선에 의학 작물의 활성 증진. 한국환경농학회지. 17:76-85
  3. 김재성, 이은경, 백명화, 김동희, 이영복. 2000a. 저선량 감마선이 채소 발아종자의 생리활성에 미치는 영향. 한국환경농학회지. 19:58-61
  4. 김재성, 이영근, 박홍숙, 백명화, 김동희. 2000b. 옥수수 생육에 미치는 저선량 감마선 조사효과. 한국환경농학회지. 19:328-331
  5. 김재성, 백명화, 김동희, 이영근, 정규희. 2001a. 묵은 채소 종자의 발아와 생육 및 효소활성에 미치는 $\gamma$ 선의 영향. 한국환경생물학회지. 19:205-210
  6. 김재성, 백명화, 이혜연, 이영근. 2001b. 묵은 고추종자의 발아와 생리활성에 미치는 저선량 방사선조사 효과. 대한방사선 방어학회지. 26:409-415
  7. 김재성, 백명화, 이영근, 이혜연, 유준철. 2002a. 참박과 호박종자의 발아촉진을 위한 저선량 감마선의 효과. 한국환경농학회지. 21:202-207
  8. 김재성, 이혜연, 백명화, 김재호, 김승열. 2002b. 씨감자의 휴면조절과 생육 및 생리활성에 미치는 저선량 $\gamma$선의 효과. 한국원예학회지. 43:596-602
  9. Bassam A-S. A Zouheer and J Dana. 2000. The effect of gamma irradiation on potato microtuber production in vitro. Plant cell, Tissue and Organ Culture 61: 183-187 https://doi.org/10.1023/A:1006477224536
  10. Charbaji T and I Nabulsi. 1999. Effect of low doses of gamma irradiation on in vitro growth of grapevine. Plant cell, Tissue and Organ Culture 57:129-132 https://doi.org/10.1023/A:1006360513965
  11. Dahal P, KJ Bradford, RA Jones. 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. J. Exp. Bot. 41:1431-1439 https://doi.org/10.1093/jxb/41.11.1431
  12. Davis TD. 1998. Effect of shoot growth retardants and inhibitors on adventitious rooting. pp 174-184. In Adventitious root formation in cuttings (Davis TD, BE Haissing and N Sankhla eds.). Dioscorides Press, Oregon
  13. Ding XL, DJ Luckett and NL Darvey. 1991. Low-dose gamma irradiation promotes wheat anther culture response. Aust. J. Bot. 39:467-74 https://doi.org/10.1071/BT9910467
  14. Garg CK, B Tirwari and O Singh. 1972. Effect of presowing gamma irradiated seeds in relation to the germination behavior of Indian colza (Brassica campestris L. var. Sarson Prain). Indian J. Agric. Sci., 42:53
  15. Genty B, JM Briantais and NR Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 90:87-92
  16. Hemmat M, GW Zeng and AA Khan. 1985. Responses of intact and scarified culy dock (Rumex crispus) seeds to physical and chemical stimuli. Weed Sci. 33:658-664
  17. Karssen CM. 1995. Hormonal regulation of seed development, dormancy, and seed germination studied by genetic control. pp.333-350. In Seed development and germination (Kigel J and G Gali eds.). Marcel Dekker, Inc. New York
  18. Khan AA. 1975. Primary, preventive and permissive roles of hormones in plant systems. Bot. Review 41:391-420 https://doi.org/10.1007/BF02860831
  19. Koepp R. and M Kramer. 1981. Photosynthetic activity and distribution of photoassimilated $^{14}C$ in seedlings of Zea mays grown from gamma-irradiated seeds. Photosynthetica 15:484-493
  20. Krause GH and E Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. BioI. 42:313-349 https://doi.org/10.1146/annurev.pp.42.060191.001525
  21. Luckey TD. 1980. Hormesis with ionizing radiation, CRC Press, Florida
  22. Murashige T and Skoog F. 1962 A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Persson B. 1993. Enhancement of seed germination in ornamental plants by growth regulators infused via acetone. Seed Sci. Technol. 21:218-290
  24. Thiede ME, O Link, RJ Fellows and PA Beedlow. 1995. Effects of gamma radiation on stem diameter growth, carbon gain and biomass partitioning in Helianthus annuus. Environ Exp. Bot. 35:33-41 https://doi.org/10.1016/0098-8472(94)00042-4
  25. van Kooten O and FH SneI. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25: 147-150 https://doi.org/10.1007/BF00033156
  26. Vlasyuk PA. 1964. Effect of ionizing radiation on the physiological biochemical properties and metabolism of agricul- tural plants. Inst. Fiziol. Biokhim. Rast. SSR. 24-31