DOI QR코드

DOI QR Code

Antimicribial and Antioxidant Activities of Ethanol Extracts of Medicinal Plants

  • Published : 2005.03.01

Abstract

The objective of this study was to determine the radical scavenging activity, total phenolic content, antimicrobial activity, minimum inhibitory concentration (MIC) of ethanol extracts of 32 medical plant species that have been commonly used in medicinal plants. Total phenolic index of T. chebula exhibited the highest value (498.01㎎/g), followed by R. coreanus miquel (400.33㎎/g), Sanguisorba officinalis (368.25㎎/g), P. thumbergiana (259.74㎎/g) and Eugenia aromaticum (229.38㎎/g). Radical scavenging activity for the DPPH radical was highest in T. chebula (40.91%, p<0.01), followed by C. sappan (36.50%), S. officinalis (32.92%), R. coreanus miquel (26.54%) and P. thumbergiana (24.50%). The extracts from T. chebula, R. coreanus muquel, C. sappan, E. aromaticum, S. officinalis and C. japonica possessed outstanding antimicrobial activity against Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Lactobacillus plantarum. MIC was determined on those extracts that showed high efficacy against the test organisms. The most potent MIC values were seen for T. chebula extract against P. aeruginosa, S. aurusa, E. coli, B. subtilis, L. plantarum and S. Typhimurium at 7.8, 7.8, 15.6, 7.8, 125 and 31.2㎍/mL, respectivley. Furthermore, the total phenolic content and radical scavenging activity were very closely correlated for all samples (r=0.78). The coefficient correlations between total phenolic index and antimicrobial activity were 0.91 (E. coli), 0.91 (B. subtillis), 0.79 (P. aeruginosa), 0.79 (S. Typhimurium) and 0.70 (L. plantarum).

Keywords

References

  1. Meng J, Zhao S, Doyle MP, Joseph SW. 1998. Antibiotic resistance of Escherichia coli O157:H7 and O157:NM isolated from animals, food, and humans. J Food Prot 61: 1511-1514 https://doi.org/10.4315/0362-028X-61.11.1511
  2. Ito N, Fukushima S, Tamano S, Hiroe M, Hagiwara A. 1986. Dose response in butylated hydroxyanisole induction of forestomach carcinogenesis in F 344 rats. J Natl Cancer Inst 77: 1261-1265
  3. Wurtzen G. 1993. Scientific evaluation of the safety factor for the acceptable daily intake (ADI). Case study: butylated hydroxyanisole (BHA). Food Addit Contam 10: 307-314 https://doi.org/10.1080/02652039309374153
  4. Haraguchi H, Saito T, Okamura N, Yagi A. 1995. Inhibition of lipid peroxidation superoxide generation by diterpenoids from rosmarinus in leaf senescence. Plant Med 61: 333-336 https://doi.org/10.1055/s-2006-958094
  5. Abbas JA, EI-Oqlah AA, Mahasneh AM. 1992. Herbal plants in the traditional medicine of Bahrain. Economics Botany 46: 158-163 https://doi.org/10.1007/BF02930630
  6. Alzoreky NS, Nakahara K. 2003. Antimicrobial activity of extracts from some edible plants commonly consumed in Asia. Int J Food Microbiol 80: 223-230 https://doi.org/10.1016/S0168-1605(02)00169-1
  7. Soliman KM, Badeaa RI. 2002. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food and Chemical Toxicology 40: 1669-1675 https://doi.org/10.1016/S0278-6915(02)00120-5
  8. Mahasneh AM, Abbas JM, El-Oqlah AA. 1996. Antimicrobial activity of extracts of herbal plants used in the traditional medicine of Bahrain. Phytotherapy Research 10: 251-253 https://doi.org/10.1002/(SICI)1099-1573(199605)10:3<251::AID-PTR808>3.0.CO;2-Q
  9. Kroon PA, Williamson G. 1999. Hydroxycinnamates in plants and food: current and future perspectives. J Sci Food Agric 79: 355-361 https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G
  10. Tapiero H, Tew KD, Ba GN, Mathe G. 2002. Polyphenols: do they playa role in the prevention of human pathologies. Biomed Pharmacother 56: 200-207 https://doi.org/10.1016/S0753-3322(02)00178-6
  11. Salvi A, Brihlmann C, Migliavacca E, Carrupt PA, Hostettmann K, Testa B. 2002. Protection by antioxidants: developments of a convenient assay and structure-activity relationships of natural polyphenlos. Helv Chem Acta 85: 867-881 https://doi.org/10.1002/1522-2675(200203)85:3<867::AID-HLCA867>3.0.CO;2-Z
  12. Singleton VL, Rossi JAJ. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American J Enology and Viticulture 16: 144-158
  13. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft und Technologie 28: 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  14. Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke RH. 1995. Manual of Clinical Microbiology. 6th ed. ASM, Washington, DC
  15. Shahidi F, Wanasundara PK. 1992. Phenolic antioxidants. Critical Reviews in Food Science and Nutr 32: 67-103 https://doi.org/10.1080/10408399209527581
  16. Komali, AS, Zheng Z, Shetty K. 1999. A mathematical model for the growth kinetics and synthesis of phenolics in oregano (Origanum vulgare) shoot cultures inoculated with Pseudomonas species. Process Biochemistry 35: 227-235 https://doi.org/10.1016/S0032-9592(99)00054-0
  17. Moller JKS, Madsen HL, Altonen T, Skibsted LH. 1999. Dittany (Origanum dictamnus) as a source of water-extractable antioxidants. Food Chemistry 6: 215-219
  18. Adzet T, Vila R, Canigueral S. 1988. Chromatographic analysis of polyphenols of some Iberian Thymus. J Ethno-pharmacology 24: 147-154 https://doi.org/10.1016/0378-8741(88)90146-8
  19. Saleem A, Husheem M, Harkonen P, Pihlaja K. 2002. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit. J Ethnophar-macology 81: 327-336 https://doi.org/10.1016/S0378-8741(02)00099-5
  20. Sabu MC, Ramadasan K. 2002. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacology 81: 155-160 https://doi.org/10.1016/S0378-8741(02)00034-X
  21. Cai Q, Rahn RO, Zhang R. 1997. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett 119: 99-107 https://doi.org/10.1016/S0304-3835(97)00261-9
  22. Shahidi Bonjar GH. 2004. Antibacterial screening of plants used in Iranian folkloric medicine. Fitoterapia 75: 231-235 https://doi.org/10.1016/j.fitote.2003.12.013

Cited by

  1. Antioxidant and Antiobesity Activities of Various Color Resources Extracted from Natural Plants vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.165
  2. Antioxidant and α-Glucosidase Inhibition Activities of Solvent Fractions from Methanolic Extract of Sericea Lespedeza (Lespedeza cuneata G. Don) vol.41, pp.11, 2012, https://doi.org/10.3746/jkfn.2012.41.11.1508
  3. Antimicrobial Activity of Psoralea corylifolia, Schisandra chinensis, and Spatholobus suberectus Extracts vol.45, pp.4, 2013, https://doi.org/10.9721/KJFST.2013.45.4.495
  4. and its Chemical Constituents: A Review vol.46, pp.02, 2018, https://doi.org/10.1142/S0192415X18500155
  5. Characterization of polyphenolic constituents from Sanguisorba officinalis L. and its antibacterial activity vol.245, pp.7, 2019, https://doi.org/10.1007/s00217-019-03276-2
  6. Changes in cell membrane properties and phospholipid fatty acids of bacillus subtilis induced by polyphenolic extract of Sanguisorba officinalis L vol.85, pp.7, 2005, https://doi.org/10.1111/1750-3841.15170