Environmental Change of High Moor in Mt. Dae-Am of Korean Peninsula

대암산 고층습원의 환경변천

  • Yoshioka, Takahito (Institute for Hydrospheric-Atmospheric Sciences Nagoya Univ) ;
  • Kang, Sang-Joon (School of Science Ed College of Education Chungbuk National University)
  • ;
  • 강상준 (충북대학교 사범대학 과학교육학부)
  • Published : 2005.03.31

Abstract

The environmental change of Yong-nup in Mt. Dae-Am, which is located at the northern part of Kangwon-Do, Korea, was assesed with peat sedimentary carbon and nitrogen isotope analysis. The surface layer of the peat (0 ${\sim}$ 5 cm) was 190 year BP, and the middle layers (30 ${\sim}$ 35 cm and 50 ${\sim}$ 55 cm) were 870 year BP and 1900 year BP, respectively. Bulk sedimentation rate was estimated to be about 0.4 mm $year^{-1}$ for 0 cm to 30 cm and 0.15 mm $year^{-1}$ for 35 cm to 50 cm. The $^{14}C$ age of the bottom sediment (75 ${\sim}$ 80 cm) collected and measured in this study was about 1900 year BP, although it was measured that the $^{14}C$ of the lowest bottom sediment in Yong-nup was 4105 ${\pm}$ 175 year BP (GX-23200). Since the $^{14}C$ ages for 50 ${\sim}$ 55 cm and 75 ${\sim}$ 80 cm layers were almost the same as 1890 ${\pm}$ 80 fear BP (NUTA 5364) and 1850 ${\pm}$ 90 year BP (NUTA 5462), respectively, we have estimated that the deep layers (55 ${\sim}$ 80 cm) in the high moor were the original forest soil. The low organic C and N contents in the deeper layers supported the inference. The sediment of 50 ${\sim}$ 55 cm layer contains much sandy material and showed very low organic content, suggesting the erosion (flooding) from the surrounding area. In this context, the Yong-nup, high moor, of Mt. Dae-Am, might have developed to the sampling site at about 1900 year BP. The ${\delta}^{13}C$ values of organic carbon and the ${\delta}^{15}N$ values of total nitrogen in the peat sediments fluctuated with the depths. The profile of ${\delta}^{13}C$ may indicate that the Yong-nup of Mt. Dae-Am have experienced the dry-wet and cool-warm period cycles during the development of the high moor. The ${\delta}^{15}N$ may indicate that the nitrogen cycling in the Yong-nup have changed from the closed (regeneration depending) system to the open (rain $NO_3\;^-$ and $N_2$ fixation depending) system during the development of the high moor.

강원도 양구군과 인제군의 경계에 있는 대암산 용늪의 이탄 퇴적물을 사용하여 탄소 및 질소 동위원소비의 해석을 통하여 용늪의 환경변천의 해석을 시도하였다. 표층 0 ${\sim}$ 5 cm의 연대는 BP190년, 30 ${\sim}$ 35 cm층 및 50 ${\sim}$ 55 cm층에서는 각각 BP870, BP1870년으로 측정되었다. 유기물 함량이 높은 0 ${\sim}$ 35 cm의 이탄층에서 bulk의 퇴적속도는 약 0.4mm/년으로 계산되었다. 금번 시료를 채취한 지점의 퇴적물 최하층인 75 ${\sim}$ 80 cm층의 $^{14}C$연대는 약 BP1900년으로 측정되었고 50 ${\sim}$ 55 cm와 75 ${\sim}$ 80cm층의 측정연대가 거의 비슷한 것으로 보아서 용늪의 심층부는 원래의 삼림 토양인 것으로 판단되었다. 50 ${\sim}$ 55 cm층은 모래 성분이 포함되어 있고 또한 유기물 함량이 낮은 것으로 보아 주변 지역의 침식으로부터 유래되었을 가능성이 있다고 판단되었다. 이상의 결과로부터 본 연구에서 이용한 시료의 채취 지점에서는 BP1900년 경부터 습원화가 되었다고 추정된다. 유기탄소 동위원소비, 총 질소동위원소비는 깊이 방향으로 변동이 보였다. 이러한 사실로부터 대암산 고층습원의 발달과정에 있어서 기후조건의 변동과 함께 질소순환계의 변화도 있었던 것으로 추론 되었다.

Keywords

References

  1. 강상준. 1987. 대암산 고층습원의 식물생태학적 연구. 휴전선 일대의 자연연구. 강원대학교 출판부. pp.169-201
  2. 강상준. 1988. 대암산 고층습원의 이탄구조와 화분분석. 환경청. 대암산 자연생태계 조사보고서. pp. 99-146
  3. 中井信之, 洪思澳. 1980. 韓國永郞湖堆積物の地球化學的手段による古氣候變化の硏究-安定同位体化 ($^{13}C/^{12}C$)及び 硫物含量にとる-.交部省海外學術調査現 地調査中間報告. (404332). pp.57-61
  4. 中村 純. 1967. 花紛分析. 古今書院. 東京. p.232
  5. 阪口豊. 1974. 泥炭地の地球-環境境の變化を探る-.東京大學 出版會. 東京. p.329
  6. 塚田松雄. 1974. 古生態學 II.-應用編-. 共立出版株式會社. 東京. p.231
  7. Benner, R., M.L. Fogel, E.K. Spraugue and R.E. Hodson, 1987. Depletion of $^{13}C$ in lignin and its implication for stable isotope studies. Nature. 329: 708-710 https://doi.org/10.1038/329708a0
  8. Bertram, H.G. and G.H. Schleser. 1982. The ($^{13}C/^{12}C$) isotope ratios in a North-German podzol. In Stable Isotopes. Schmidt H.L., H. Foerstel and K. Heinzinger eds., Elsevier Scientific Publishing Company. Amsterdam. pp. 115-120
  9. Birks, H.J.B. and H.H. Birks. 1980. Quaternary Palaeoecology. Edward Anold. London. p.289
  10. Birks, H.J.B. and A.D. Gordon. 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press. Orlando. p.317
  11. Evans, R. and J.R. Ehleringer. 1993. A break in the nitrogen cycle in aridlands? Evidence from ${\Delta}^{15}$N of soil. Oecologia. 94: 314-317 https://doi.org/10.1007/BF00317104
  12. Faegri, K. and J. Iversen. 1975. Textbook of Pollen Analysis. Munksgaard. Denmark. p.295
  13. Farquhar, G.D. and P.A. Richards. 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539- 552 https://doi.org/10.1071/PP9840539
  14. Ishizuka, T. 1977. Stable carbon isotope composition of organic material and carnonate in sediment of a swamp and lakes in Honshu island, Jap. J. Earth Sci. Nagoya Univ. 25: 11-21
  15. Kang, S.J. 1976. Ecological studies of the raised bog in Dae -Am mountain adjacent to DMZ in Korea. J. Res. Sci. Ed., Chuncheon Teachers College. 2: 81-104
  16. Kang, S.J., T. Yoshioka, J.Y. Lee and H.A. Takahashi 2001. Paleo-environment in Dae-Am San high moor in the Korean peninsula. Radiocarbon. 43: 555-559
  17. Kitagawa, H. 1987. Carbon isotope ratio of cellulose extraced from Sugi tree (Cryptomeria japonica). Geosci. Repts. Shizuoka Univ. 13: 25-30
  18. Kitagawa, H. and E. Matsumoto. 1993. Climate implication of ${\Delta}^{13}$C variations in a Japanese cedar (Cryptomeria japonica) during the last two millenia. Geophysical Res. Letters. 22: 2155-2158
  19. Mariotti, A., P.D. Pierre, J.C. Vedy and S. Bruckert. 1980. The abundance of natural nitrogen-15 in the organic matter of soils along an altitidinal gradient (Chablais, Haute Savoie, France). Catena. 7: 293-300
  20. Minagawa, M., D.A. Winter and I.R. Kaplan. 1984. Comparision on kjeldahl and combution methods for measurement of nitrogen isotope ratios in organic matter. Anal. Chem. 56: 1859-1861 https://doi.org/10.1021/ac00275a023
  21. Minomo, K., T. Akagi, S. Yonemura, M. Yoh, H. Turuta and T. Nakamura. 1997. ${\Delta}^{13}$C vertical change of peats in the Ozegahara wetland. Dating and Materials Research Center, Nagoya Univ. III: 146-151
  22. Moore, P.D. and J.A. Webb. 1978. An Illustrated Guide to Pollen Analysis. Hodder and Stoughton. London. p.133
  23. Moore, P.D., J.A. Webb and M.E. Collinson. 1991. Pollen Analysis. Blackwell Scientific Pub. London. p.216
  24. Nadelhoffer, K.J. and B. Fry. 1988. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci. Am. J. 52: 1633-1640 https://doi.org/10.2136/sssaj1988.03615995005200060024x
  25. Nadelhoffer, K., G. Shaver, B. Fry, A. Giblin, L. Johnson and R. McKane. 1996. 15N natural abundances and N use by tundra plants. Oecologia. 107: 386-394 https://doi.org/10.1007/BF00328456
  26. Osvald, H. 1928. Nordamerikanska mosstyper. Svensk Bot. Tids. 22: 377-391
  27. Osvald, H. 1930. Soedra sveriges mosstyper. Svensk Geogr. Arsb. 30: 117-140
  28. Peters, K.E., R.E. Sweeney and I.R. Kaplan. 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. Oceanogr. 24: 598- 604
  29. Rundel, P.W., J.R. Ehleringer and K.A. Nagy. 1988. Stable Isotope in Ecological Research. Ecological Studies. Vol. 68. Springer-Verlag. New York
  30. Schultz, D.J. and J.A. Calder. 1976. Organic carbon $^{13}C/^{12}C$ variations in estuarine sediments. Geochim. Cosmochim. Acta. 40: 381-385 https://doi.org/10.1016/0016-7037(76)90002-8
  31. Sukumar, R., T. Ramesh, R.K. Pant and G. Rajagopalan. 1993. A ${\Delta}^{13}$Crecord of late Quaternary climate change from tropical peats in southern India. Nature. 364: 703 -706 https://doi.org/10.1038/364703a0
  32. Vitousek, P.M., G. Shearer and D.H. Kohl. 1989. Foliar $^{15}$N natural abundance in Hawaiian rainforest: patterns and possible mechanism. Oecologia. 78: 383-388 https://doi.org/10.1007/BF00379113
  33. White, J.W.C., P. Ciais, R.A. Figgs, R. Kenny and V. Markgraf. 1994. A high-resolution record of atmospheric $CO_2$ content from carbon isotopes in peats. Nature. 367: 153-156 https://doi.org/10.1038/367153a0
  34. Williams, P.M. and L.I. Gordon. 1970. Carbon-13 : carbon- 12 ratios in dissolved and particulate organic matter in the sea. Deep-Sea Res. 17: 19-27
  35. Willis, A.J. 1973. Introduction to Plant Ecology. London Allen & Unwin Ltd. Oxford. pp.56-73
  36. Yoshioka, T., E. Wada and Y. Saijo. 1988. Isotopic characterization of lake Kizaki and Suwa. Jap. J. Limnology. 49: 119-128 https://doi.org/10.3739/rikusui.49.119
  37. Yoshioka, T., S. Ueda, T. Miyajima, E. Wada, N. Yoshida, A. Sugimoto, P. Vijarnsorn and S. Boonprakub. 2002. Biogeochemical properties of a tropcal swamp forest ecosystem in southern Thailand. Limnology. 3: 51-59 https://doi.org/10.1007/s102010200007