Field Tests for Assessing the Bioremediation Feasibility of a Trichloroethylene-Contaminated Aquifer

관측정 자연표류 실험을 통한 트리클로로에틸렌(Trichloroethylene) 오염 지하수의 생물학적 복원 타당성 연구

  • Kim Young (Dept. of Environmental Engineering, Korea University) ;
  • Kim Jin-Wook (Dept. of Environmental Engineering, Korea University) ;
  • Ha Chul-Yoon (Dept. of Environmental Engineering, Korea University) ;
  • Kim Nam-Hee (Dept. of Environmental Engineering, Korea University) ;
  • Hong Kwang-Pyo (Dept. of Environmental Engineering, Korea University) ;
  • Kwon Soo-Yul (Dept. of Environmental Health, Korea National Open University) ;
  • Ahn Young-Ho (School of Civil and Environmental Engineering, Yeongnam University) ;
  • Ha Joon-Su (GreenTech Environmental Consulting Co.) ;
  • Park Hoo-Won (GreenTech Environmental Consulting Co.)
  • 김영 (고려대학교 환경시스템공학과) ;
  • 김진욱 (고려대학교 환경시스템공학과) ;
  • 하철윤 (고려대학교 환경시스템공학과) ;
  • 김남희 (고려대학교 환경시스템공학과) ;
  • 홍광표 (고려대학교 환경시스템공학과) ;
  • 권수열 (한국방송통신대학교 환경보건학과) ;
  • 안영호 (영남대학교 건설환경공학부) ;
  • 하준수 ((주)그린텍환경컨설팅) ;
  • 박후원 ((주)그린텍환경컨설팅)
  • Published : 2005.06.01

Abstract

The feasibility of stimulating in situ aerobic cometabolic activity of indigenous microorganisms was investigated in a trichloroethylene (TCE)-contaminated aquifer. A series of single-well natural drift tests (SWNDTs) was conducted by injecting site groundwater amended with a bromide tracer and combinations of toluene, oxygen, nitrate, ethylene and TCE into an existing monitoring well and by sampling the same well over time. Three field tests, Push-pull Transport Test, Drift Biostimulation Test, and Drift Surrogate Activity Test, were performed in sequence. Initial rate of toluene degradation was much faster than the rate of bromide dilution resulting from natural groundwater drift, indicating stimulation of indigenous toluene-oxidizing microorganisms. Transformation of ethylene, a surrogate probing overall activity of TCE transformation, was also observed, and its transformation results in the production of ethylene oxide, suggesting that some tolueneoxidizing microorganisms stimulated may express a orthomonooxygenase enzyme. Also in situ transformation of TCE was confirmed by greater retardation of TCE than bromide after the stimulation of toluene-oxidizing microorganisms. These results indicate that, in this environment, toluene and oxygen additions stimulated the growth and aerobic cometabolic activity of indigenous microorganisms expressing orthomonooxygenase enzymes. The simple, low-cost field test method presented in this study provides an effective method for conducting rapid field assessments and pilot testing of aerobic cometabolism, which has previously hindered application of this technology to groundwater remediation.

본 연구는 현장 관측정 자연표류 실험 (SWNDT, Single-Well Natural Drift Test) 을 이용하여 트리클로로에틸렌 (TCE, trichloroethylene) 으로 오염된 지하수의 생물학적 복원 가능성 조사 방법 및 결과 해석법을 제시하였다. 현장 SWNDT 실험에 사용한 용액은 일정 양의 추적자 (브롬이온), 생분해 기질 (톨루엔, 에틸렌, 용존산소, 질산성질소) 을 현장 지하수에 용해시켜 준비한다. 준비된 실험용액을 대수층에 주입하고, 주입 시 시료를 채취하여 추적자와 생 분해 기질들의 초기 농도를 측정한다 주업 후 시간에 따라서 시료를 채취하여 추적자, 생분해 기질, 생분해 부산물들의 농도를 측정한다. 현장 SWNDT 실험은 생분해 기질과 추적자의 상대적 거동을 평가하기 위한 Push-pull Transport Test (PPTT), 토착 미생물의 양과 활성도를 증가시키기 위한 Drift Biostimulation Test (DBT), 트리클로로에틸렌과 미생물 반응이 유사하리라 예상되는 기질을 시험하기 위한 Drift Surrogate Activity Test (DSAT) 순으로 진행되었다 SWNDT 실험 양수 시 추적자로 사용한 브롬이용의 농도변화 곡선은 톨루엔, 에틸렌, 용존산소, 질산성 질소 농도변화와 유사한 경향을 나타냈다. 즉 대수층에서의 생분해 기질들의 이송이 추적자와 유사함을 나타내는 결과이다. 토착 톨루엔산화 미생물의 존재를 톨루엔 농도의 감소에 따른 이산화탄소의 발생 및 용존산소 농도의 감소로 확인하였고, 그 톨루엔 산화 미생물은 트리클로로에틸렌 생분해 유사기질로 사용된 에틸렌을 분해하며, 부산물로 산화에틸렌 (ethylene oxide) 을 생성하였다. 이는 DBT 실험을 통하여 활성화된 톨루엔 분해 미생물이 트리클로로에틸렌 분해능이 있음을 나타낸다. 본 연구에서 제시한 현장 SWNDT 실험 방법 및 결과 해석 방법은 트리클로로에틸렌으로 대표되는 염화 지방족 탄회수소화합물(Chlorinated Aliphatic Hydrocarbons, CAHs)로 오염된 지하수의 생물학적 복원 타당성 평가를 위한 경제적이고 용이한 현장 실험 방법이다.

Keywords

References

  1. Alvarez-Cohen, L.M., and McCarty, P.L., 1991, Effects oftoxicity, aeration and reductant supply on trichlorethylene transformation by a mixed methanotrophic culture, Appl. Environ. Microbiol., 57, 228-235
  2. Arp, D.J., 1995, Understanding the diversity of trichloroethene co-oxidations, Current Opinion in Biotechnology., 6, 352-358 https://doi.org/10.1016/0958-1669(95)80059-X
  3. Chang, H.L. and Alvarez-Cohen, L., 1995, Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene or phenol, Biotech. Bioeng., 45, 440-449 https://doi.org/10.1002/bit.260450509
  4. Hopkins, GD. and McCarty, P.L., 1995, Field observation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as primary substrates, Environ. Sci. Technol., 29, 1628-1637 https://doi.org/10.1021/es00006a029
  5. Kim, Y., Semprini, L., and Arp, D.J., 1997a, Aerobic cometabolism of chloroform and 1, 1, 1-trichloroethane by butane-grown microorganisms, Bioremediation J., 2, 135-148
  6. Kim, Y., Semprini, L., and Arp, D.J., 1997b, Aerobic cornetabolism of chloroform, 1,1,1-trichloroethane, and the other chlorinated aliphatic hydrocarbons by butane-utilizing microorganisms, In: In situ and On-site Bioremediation Alleman, B. C,; Leeson, A., Eds.; Battelle Press, Columbus, OH, 3, 107-112
  7. Kim, Y., Arp, D.J., and Sernprini, L., 2000, Aerobic cornetabolism of chlorinated methanes, ethanes, and ethenes, by a butanegrown mixed culture, J of Environ. Engr., 126, 934-942 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:10(934)
  8. Kim, Y., Istok, J.D., and Semprini, L., 2004, Push-pull tests for assessing in-situ aerobic cometabolism, Ground Water., 42, 329-337 https://doi.org/10.1111/j.1745-6584.2004.tb02681.x
  9. Parales, R.E., Ditty, J.L., and Harwood, C.S., 2000, Toluenedegrading bacteria are chemotactic twards the environmental pollutants benzene, toluene, and trichloroethylene, Appl. Environ. Microbiol., 66, 4098-4104 https://doi.org/10.1128/AEM.66.9.4098-4104.2000
  10. Semprini, L., 1997, Strategies for the aerobic co-metabolism of chlorinated solvents, Curr. Opin. Biotechnol., 8, 296-308 https://doi.org/10.1016/S0958-1669(97)80007-9
  11. Van Hylckama Vlieg, J.E. T., de Koning, W., and lassen, D.B., 1996, Transformation kinetic of chlorinated ethenes by Methylosinus trichosporiumOB3b and detection of unstable epoxides by on-line gas chromatography, Appl. Environ. Microbiol., 62, 3304-3312
  12. Wackett, L.P. and Gibson, D.T., 1988, Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1, Appl. Environ. Microbiol., 54, 1703-1708
  13. World Health Organization., 1984, Guidelines for drinking water quality WHO, Geneva
  14. Yeager, C.M., Bottomley, PJ., Arp, D.l, and Hyman, M.R., 1999, Inactivation of toluene 2-monooxygenase in Burkholderia cepacia G4 by alkynes, Appl. Environ. Microbiol., 65, 632-639