Evaluation of Microbial PCE Reductive Dechlorination Activity and Microbial Community Structure using PCE-Contaminated Groundwater in Korea

사염화에틸렌(PCE)으로 오염된 국내 4개 지역 지하수 내 생물학적 PCE 탈염소화 활성 및 미생물 군집의 비교

  • Kim Young (Dept. of Environmental Engineering, Korea University) ;
  • Kim Jin-Wook (Dept. of Environmental Engineering, Korea University) ;
  • Ha Chul-Yoon (Dept. of Environmental Engineering, Korea University) ;
  • Kwon Soo-Yeol (Dept. of Environmental Health, Korea National Open University) ;
  • Kim Jung-Kwan (Dept. of Environmental Health, Korea National Open University) ;
  • Lee Han-Woong (School of Life Sciences, Korea University) ;
  • Ha Joon-Soo (Greentech Environmental Consulting Co.) ;
  • Park Hoo-Won (Greentech Environmental Consulting Co.) ;
  • Ahn Young-Ho (School of Civil and Environmental Engineering, Yeongnam University) ;
  • Lee Jin-Woo (Dohwa Consulting Engineers Co., Ltd.)
  • 김영 (고려대학교 환경시스템공학과) ;
  • 김진욱 (고려대학교 환경시스템공학과) ;
  • 하철윤 (고려대학교 환경시스템공학과) ;
  • 권수열 (한국방송통신대학교 환경보건학과) ;
  • 김정관 (한국방송통신대학교 환경보건학과) ;
  • 이한웅 (고려대학교 생명과학대학) ;
  • 하준수 ((주)그린텍환경컨설팅) ;
  • 박후원 ((주)그린텍환경컨설팅) ;
  • 안영호 (영남대학교 건설환경공학부) ;
  • 이진우 ((주)도화종합기술공사)
  • Published : 2005.04.01

Abstract

In Korea, little attention has been paid to microbial perchloroethylene (PCE) and/or trichloroethylene (TCE) dechlorination activity and identification of microorganisms involved in PCE reductive dechlorination at a PCE-contaminated aquifer. We performed microcosm tests using the groundwater samples from 4 different contaminated sites (i.e. Changwon A, Changwon B, Bucheon and Yangsan) to assess PCE reductive dechlorination activity. We also adapted molecular techniques to screen what types of known reductive dechlorinators are present at the PCE-contaminated aquifers. In the Changwon A and Changwon B active microcosms where potential electron donors such as sodium propionate, sodium lactate, sodium butyrate, and sodium fumarate, were added, ethylene, an end-product of complete reductive dechlorination of PCE, was detected after a period of 90 days of incubation. In the Bucheon and Yangsan active microcosms, cis-1,2-dichloroethylene (c-DCE) was accumulated without the production of vinyl chloride (VC) and ethylene. Molecular techniques were used to evaluate the microbial community structures in the Changwon B and Yangsan aquifer. We found two sequence types that were closely related to a known PCE to ethylene dechlorinator, named uncultured bacterium clone DCE47, in the Changwon B site clone library. However, in the Yangsan site clone library, no sequence type was closely related to known PCE dechlorinators reported. It is plausible that microorganisms being capable of completely dechlorinating PCE to ethylene may be present in the Changwon B site aquifer. In this study we find that complete PCE reductive dechlorinators are present at some PCE-contaminated sites in Korea. In an engineering point of view this information makes it feasible to apply a biological reductive dechlorination process for remediating PCE- and/or TCE-contaminated aquifers in Korea.

본 연구는 사염화에틸렌(Perchloroethylene) 또는 트리클로로에틸렌(Trichloroethylene)으로 오염된 국내 지하수 내에 국외에서 보고된 환원성 탈염소화 미생물의 존재 유무와 사염화에틸렌의 생물학적 탈염소화 활성도를 평가하였다. 마이크로코즘 테스트(microcosm tests)는 4개의 오염지역(창원 A, 창원 B, 부천 및 양산) 지하수와 다양한 전자공여체 (sodium lactate, sodium propionate, sodium butyrate, sodium fumarate)를 이용하여 수행하였다. 단일 전자공여체 와 창원 A 혹은 창원 B 지하수를 주입한 전 마이크로코즘에서 사염화에틸렌 완전 탈염소화 분해 시 발생하는 최종 산물인 에틸렌이 배양 90일 후에 검출되었고, 부천 혹은 양산 지역의 지하수를 주입한 마이크로코즘에서는 배양 90 일 후 시스-1,2-디클로로에틸렌(cis-1 ,2-Dichloroethylene)만이 검출되었고, 염화비닐(Vinyl chloride) 과 에틸렌은 검출되지 않았다. 완전 탈염소화 생분해가 확인된 창원 B 지역 지하수와 불완전 탈염소화 생분해가 확인된 양산 지역 지하수 내 미생물 군집을 비교하기 위해 분자생물학적 방법을 이용한 실험을 수행하였다. 창원 B 지역 지하수의 클론 라이브러리(Clone library)에서 사염화에틸렌 완전 탈염소화 미생물, uncultured bacterium clone DCE47과 매우 유사한 염기서열 클론이 확인되었다. 그러나 양산 지역의 클론 라이브러리에서는 기존의 염화에틸렌 탈염소화 미생물과 유사한 염기서열 클론이 확인되지 않았다. 본 연구 결과를 통하여 국내 일부 지역의 지하수 내에 사염화에틸렌을 완전 탈염소화하여 무해한 에틸렌으로 분해하는 미생물이 존재함을 확인하였고, 적절한 전자공여체를 공급하는 경우 그 분해 활성도가 증가함을 확인하였다. 이 결과는 사염화에틸렌 혹은 트리클로로에틸렌으로 오염된 국내 지하수를 경제적인 공법인 환원성 탈염소화 생물학적 공정으로 복원할 수 있는 기능성을 보여주는 중요한 지표라고 사료된다.

Keywords

References

  1. Braker, G, Zhou, J., Wu, L., Devol, A.H., and Tiedje, J.M., 2004, Nitrate reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities, Appl. Environ. Microbiol., 66, 2096-2104 https://doi.org/10.1128/AEM.66.5.2096-2104.2000
  2. Chang, Y.C., Hatsu, M., Jung, K., Yoo, Y.S., Okeke, B.C., and Takamizawa, K., 2000, Characterization of a tetrachloroethylene degrading bacterium clostridium bifermentans DPH-1, Biosci. and Bioeng., 89(5), 489-491 https://doi.org/10.1016/S1389-1723(00)89102-1
  3. Gerritse, J., Renard, V., Pedro Gomes, T.M., Lawson, P.A., Collins, M.D., and Gottschal, J.C., 1996, Desulfitobacteriumsp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols, Arch. Microbiol., 165, 132-140 https://doi.org/10.1007/s002030050308
  4. Gerritse, J., Drzyzga, O., Kloetstra, G, Keijrnel, M., Wiersum, L.P., Huston, R., Collins, M.D., and Gottschal, J.C., 1999, Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCEI, Appl. Environ. Microbiol., 65(12), 5212-5221
  5. Gu, A.Z., Hedlund, B.P., Staley, J.T., Strand, S.E., and Stensel, H.D., 2004, Analysis and comparison of the microbial community structures of two enrichment cultures capable of reductively dechlorinating TCE and cis-DCE, Environmental Microbiology., 6(1), 45-54 https://doi.org/10.1046/j.1462-2920.2003.00525.x
  6. Holliger, C., Hahn, D., Harmsen, H., Ludwig, W., Schumacher, W., Tindall, B., Vazquez, F., Weiss, N. and Zehnder, A.J., 1998, Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration, Arch. Microbiol., 169(4), 313-321 https://doi.org/10.1007/s002030050577
  7. Krumholz, L.R., Sharp, R.,and Fishbain, S.S., 1996, A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation, Appl. Environ. Microbiol., 62( 11), 4108-4113
  8. Loffler, F.E., Ritalahti, K.M., and Tiedje, J.M., 1997, Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens, Appl. Environ. Microbiol., 63(12), 4982-4985
  9. Loffler, F.E., Sun, Q., Li, J., and Tiedje, J.M., 2000, 16S rDNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species, Appl. Environ. Microbiol.,66(4), 1369-1374 https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  10. Mandel, M. and Higa, A., 1970, Transformation by the calcium chloride procedure, J. Mol. Biol., 53, 159-162 https://doi.org/10.1016/0022-2836(70)90051-3
  11. Maymo-Gatell, X., Chien, Y., and Gossett, J.M., 1997, Isolation of bacterium that reductively dechlorinates tetrachloroethene and ethane, Science, 276(6), 1568-1571 https://doi.org/10.1126/science.276.5318.1568
  12. Neumann, A., Wohlfarth, G., and Diekert, G., 1996, Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. Biological Chemistry, 271(28), 16515-16519 https://doi.org/10.1074/jbc.271.28.16515
  13. Sambrook, J., Fritsch, E. F., and Maniatis, T., 1989, Molecular cloning: a laboratory manual, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  14. Sung, Y., Ritalahti, K.M., Sanford, R.A., Urbance, J.W., Flynn, S.J., Tiedje, J.M., and Loffler, F.E., 2003, Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov, Appl. Environ. Microbiol., 69(5), 2964-2974 https://doi.org/10.1128/AEM.69.5.2964-2974.2003
  15. Wild, A., Hermann, R., and Leisinger, T., 1996, Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene, Biodegradation, 7(6), 507-511 https://doi.org/10.1007/BF00115297