Heavy Metal Adsorption of Activated Carbon Fibers with Chelating Groups

킬레이트 관능기가 도입된 활성탄소섬유의 중금속 흡착

  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Shim, Gyu-Hong (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Hak-Yong (Department of Textile Engineering, Chonbuk National University)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 심규홍 (한국화학연구원 화학소재연구부) ;
  • 김학용 (전북대학교 섬유공학과)
  • Published : 2005.04.01

Abstract

In this work, the heavy metal ion adsorption behavior of activated carbon fibers (ACFs) containing chelating functional groups were studied. The ACFs were modified by fluorination and glycidyl methacrylate (GMA) graft polymerization in order to introduce chelating functional groups, such as iminodiacetate (IDA) groups, on the carbon surfaces. Fourier transform-infrared spectrometry (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used for the analysis of surface properties of the ACFs. Specific surface area was calculated from Brunauer-Emmett-Teller (BET) equation for $N_{2}$ adsorption at 77 K. In the result of XPS, the relative intensity of oxygen peaks increased with increasing treatment times of fluorination, indicating that surface oxidation occurred due to the increased treatment time of fluorination, in spite of decrease in specific surface area by pore blocking. However, the adsorption of the heavy metal ion significantly increased with increasing treatment time of fluorination. It was understood that the IDA groups of the fluorinated ACF surfaces were introduced by GMA graft polymerization and the IDA groups led to an increase in the adsorption of heavy metal ions.

Keywords

References

  1. K. E. Noll, V. Gounaris, and W. S. Hou, 'Adsorption Technology for Air Water Pollution Control', Lewis, Michigan, 1992
  2. J. A. Cusumano, J. M. Thomas, and K. I. Zamaraev, 'Perspectives in Catalysis', Blackwell, Oxford, 1992
  3. Y. Miyake, A. Sakoda, H. Yamanashi, H. Kaneda, and M. Suzuki, 'Activated Carbon Adsorption of Trichloroethylene (TCE) Vapor Stripped from TCE-contaminated Water', Water Res, 2003, 37, 1852-1858 https://doi.org/10.1016/S0043-1354(02)00564-X
  4. R. Nilsson, 'Removal of Metals by Chemical Treatment of Municipal Waste Water', Water Res, 1971, 5, 51-60 https://doi.org/10.1016/0043-1354(71)90185-0
  5. N. Meunier, J. Laroulandie, J. F. Blais, and R. D. Tyagi, 'Cocoa Shells for Heavy Metal Removal from Acidic Solutions', Bioresource Technol, 2003, 90, 255-263 https://doi.org/10.1016/S0960-8524(03)00129-9
  6. S. J. Park and Y. S. Jang, 'Pore Structure and Surface Properties of Chemically Modified Activated Carbon for Adsorption Mechanism and Rate of Cr(VI)', J Colloid Interf Sci, 2002, 249, 458-463 https://doi.org/10.1006/jcis.2002.8269
  7. Y. V. Basova, D. D. Edie, Y. S. Lee, L. K. Reid, and S. K. Ryu, 'Effect of Precursor Composition on the Activation of Pitch-based Carbon Fibers', Carbon, 2004, 42, 485-495 https://doi.org/10.1016/j.carbon.2003.12.070
  8. H. Rong, Z. Ryu, J. Zheng, and Y. Zhang, 'Influence of Heat Treatment of Rayon-based Activated Carbon Fibers on the Adsorption of Formaldehyde', J Colloid Interf Sci, 2003, 261, 207-212 https://doi.org/10.1016/S0021-9797(03)00099-7
  9. L. Conte and G. Gambaretto, 'Electrochemical Fluorination State of the Art and Future Tendences', J Fluorine Chem, 2004, 125, 139-144 https://doi.org/10.1016/j.jfluchem.2003.07.002
  10. Y. B. Chong in 'Fluorine-carbon and Fluoride-carbon Materials', T. Nakajima Ed., Marcel Dekker, NY, 1995, p.381
  11. A. Bismarck, R. Tahhan, J. Springer, A. Schulz, T. M. Klapotke, H. Zell, and W. Michaeli, 'Influence of Fluorination on the Properties of Carbon Fibers', J Fluorine Chem, 1997, 84, 127-134 https://doi.org/10.1016/S0022-1139(97)00029-8
  12. V. Dinoiu, T. Fukuhara, K. Miura, and N. Yoneda, 'Electrochemical Partial Fluorination of Phenyl-acetic Acids Esters and l-tetralone', J Fluorine Chem, 2003, 121, 227-231 https://doi.org/10.1016/S0022-1139(03)00037-X
  13. A. G. Panov, V. Gruver, and J. J. Fripiat, 'Fluorination of USY and Modification of Its Catalytic Properties', J Catal, 1997, 168, 321-327 https://doi.org/10.1006/jcat.1997.1649
  14. Y. B. Chang and H. Ohara, 'Modification of Carbon Fiber Surfaces by Direct Fluorination', J Fluorine Chem, 1992, 57, 169-175 https://doi.org/10.1016/S0022-1139(00)82829-8
  15. A. Kitamura, S. Hamamoto, A. Taniike, Y. Ohtani, N. Kubota, and Y. Furuyama, 'Application of Proton Beams to Radiation-induced Graft Polymerization for Making Amidoxine-type Adsorbents', Radiat Phys Chem, 2004, 69, 171-178 https://doi.org/10.1016/S0969-806X(03)00439-0
  16. T. Shiraishi, M. Tamada, K. Saito, and T. Sugo, 'Recovery of Cadmium from Waste of Scallop Processing with Amidoxine Adsorbent Synthesized by Graft-polymerization', Radiat Phys Chem, 2003, 66, 43-47 https://doi.org/10.1016/S0969-806X(02)00263-3
  17. P. Gong and I. Szleifer, 'Competitive Adsorption of Model Charged Proteins: The Effect of Total Charge and Charge Distribution', J Colloid Interf Sci, 2004, 278, 81-90 https://doi.org/10.1016/j.jcis.2004.05.023
  18. L. Furlan, V. T. de Favere, and M. C. M. Laranjeira, 'Adsorption of Calcium Ions by Graft Copolymer of Acrylic Acid on Biopolymer Chitin', Polymer, 1996, 37, 843-846 https://doi.org/10.1016/0032-3861(96)87263-6
  19. K. Saito, K. Sugita, M. Tamada, and T. Sugo, 'Convectionaided Collection of Metal Ions Using Chelation Porous Flatsheet Membranes', J Chromatogr A, 2002, 954, 277-283 https://doi.org/10.1016/S0021-9673(02)00163-2
  20. M. Kim, S. Kiyohara, S. Konishi, S. Tsuneda, K. Saito, and T. Sugo, 'Ring-opening Reaction of Poly-GMA Chain Grafted onto a Porous Membrane', J Membrane Sci, 1996, 117, 33-38 https://doi.org/10.1016/0376-7388(96)00026-9
  21. S. Brumauer, P. H. Emmett, and E. Teller, 'Adsorption of Gases on Multimolecular Layers', J Am Chern Soc, 1938, 60, 309-319 https://doi.org/10.1021/ja01269a023
  22. J. H. de Boer, B. G. Linsen, T. Plas, and G. J. van Zonder, 'Studies on Pore Systems in Catalysts: VII. Description of the Pore Dimensions of Carbon Blacks by the t Method', J Catal, 1965, 4, 649-653 https://doi.org/10.1016/0021-9517(65)90264-2
  23. U. Zielke, K. J. Huttinger, and W. P. Hoffman, 'Surfaceoxidized Carbon Fibers: I. Surface Structure and Chemistry', Carbon, 1996, 34, 983-998 https://doi.org/10.1016/0008-6223(96)00032-2
  24. S. J. Park, B. J. Park, and S. K. Ryu, 'Electrochemical Treatment on Activated Carbon Fibers for Increasing the Amount and Rate of Cr(VI) Adsorption', Carbon, 1999, 37, 1223-1226 https://doi.org/10.1016/S0008-6223(98)00318-2
  25. A. Tressaud, V. Gupta, C. Guimon, and F. Moguet, 'Fluorineintercalated Carbon Fibers: II. An X-ray Photoelectron Spectroscopy Study', Mater Sci Eng B, 1995, 30, 61-68 https://doi.org/10.1016/0921-5107(94)01141-9
  26. S. J. Park and W. Y. Jung, 'Effect of KOH Activation on the Formation of Oxygen Structure in Activated Carbons Synthesized Polymeric Precursor', J Colloid Interf Sci, 2002, 250, 93-98 https://doi.org/10.1006/jcis.2002.8309
  27. D. M. Ruthven, 'Principles of Adsorption and Adsorption Processes', John Wiley & Sons, NY, 1984, Chap. 2
  28. S. J. Gregg and K. S. W. Sing, 'Adsorption, Surface Area and Porosity', Academic press, NY, 1982, Chap. 3