The Mechanical Behavior of Jointed Rock Masses by Using PFC2D

PFC2D를 이용한 절리암반의 역학적 물성 평가연구

  • 박의섭 (한국지질자원연구원 지반안전연구부) ;
  • 류창하 (한국지질자원연구원 지반안전연구부)
  • Published : 2005.04.01

Abstract

Although the evaluation of the mechanical properties and behavior of jointed rock masses is very important for the design of tunnel and underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is the selection of the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. In this paper, a 30\;m\;\times\;30\;m\;\times\;30\;m m jointed rock mass of road tunnel site was analyzed. h discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of jointed rock masses were determined. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, getting the mechanical response of the PFC model doesn't require a user specified constitutive model.

절리 암반의 역학적 물성 및 거동 평가가 터널 및 지하구조물의 설계에 매우 중요하다 할지라도, 그것은 항상 매우 어려운 문제로 간주되어 왔다. 암반 거동을 모사하는데 있어서 어려움중의 하나는 적절한 구성 모델을 선정하는 것이다. 이러한 한계점은 PFC와 같이 사용자로 하여금 암반의 구성 모델을 요구하지 않는 개별요소 프로그램의 개발과 함께 극복되어질 것이다. 본 연구에서는 도로터널 현장의 30\;m\;\times\;30\;m\;\times\;30\;m 절리 암반블록을 대상으로, 시추 및 지표 지질조사를 통해 얻어진 절리의 기하학적 형태자료를 근거로 개별균열망이 작성되었다. 개별균열망 모델의 절리 형상을 근거로 절리가 없는 상태에서 점차적으로 절리군을 추가해가면서 2차원 PFC모델이 만들어졌다. 또한 각각의 PFC모델에 대한 수치모사를 통하여 각 모델의 응력-변형율 곡선이 얻어졌다. 응력-변형율 곡선으로부터 절리 암반의 역학적 물성이 결정되었다. 절리의 존재는 암반의 역학적 물성에 상당한 영향을 미쳤으며, 더욱 중요한 것은 PFC모델의 역학적 거동은 기존의 수치모델에서 요구되는 구성 모델에 의하여 결정되지 않는다는 것이다.

Keywords

References

  1. Bieniawski, Z.T., 1976, Rock mass classification in rock engineering. In Exploration for rock engineering, Proceedings of the Symposium, eds. Z.T. Bieniawski, 97106. Cape Town: Balkema
  2. Barton, N.R., R. Lien and J. Lunde, 1974, Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6.4, 189-239 https://doi.org/10.1007/BF01239496
  3. Hoek, E., P.K. Kaiser and W.F. Bawden, 1995, Support of underground excavations in hard rock. Rotterdam: Balkema
  4. Andersson, J., R. Christiansson and J.A. Hudson, 2002, Strategy for Development of a Descriptive Rock Mechanics Model: Site Investigation. SKB Technical Report TR-0201, Stockholm, Sweden
  5. Staub, I., A. Fredriksson and N. Outters, 2002, Strategy for a Rock Mechanics Site Descriptive Model: Development and testing of the theoretical approach. SKB Report R-02.02, Stockholm, Sweden
  6. Itasca Consulting Group Inc., 1999, PFC2D Particle Flow Code in 2 Dimensions, Minneapolis: Itasca
  7. Cundall, P.A. and O.D.L. Strack, 1979, A discrete numerical model for granular assembles. Geotechnique. 29, 47-65 https://doi.org/10.1680/geot.1979.29.1.47
  8. Potyondy, D.O. and C.E. Fairhurst, 1999, The Value of Numerical Modeling in Understanding the Complete Load/Deformation Behavior of Cohesive-Frictional Materials. Nondestructive and Automated Testing for Soil and Rock Properties, ASTM STP 1350, W.A. Marr and C.E. Fairhurst, Eds., American Society for Testing and Materials: 290-299
  9. Park, E.S., CD. Martin and R. Christiansson., 2004, Simulation of the Mechanical Behavior of Discontinuous Rock Masses Using a Bonded-Particle Model, in Gulf Rocks 2004: Rock Mechanics Across Borders & Disciplines. Proceedings of the 6th NARMS Conference, Houston, June 2004, D.P. Yale, S.M. Willson, and A. S. Abou-Sayed, Eds. Paper no. ARMAINARMS 04-480