Antioxidative Constituents from Paeonia lactiflora

  • Published : 2005.07.01

Abstract

The ethanol extract of the peony root (Paeonia Lactiflora Pall, Paeoniaceae) as well as its major active components including gallic acid and methyl gallate were evaluated for their protective effects against free radical generation and lipid peroxidation. In addition, the protective effects against hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line were examined. The ethanol extracts of the peony root (PREs) and its active constituents, gallic acid and methyl gallate, exhibited a significant free radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and had an inhibitory effect on lipid peroxidation, as measured by the level of malondialdehyde (MDA) formation. The PREs did not have any pro-oxidant effect. They strongly inhibited the hydrogen peroxide-induced DNA damage from NIH/3T3 fibroblasts, as assessed by single cell gel electrophoresis. Furthermore, the oral administration of 50% PRE (50% ethanol extract of peony root), gallic acid and methyl gallate potently inhibited the formation of micronucleated reticulocytes (MNRET) in the mouse peripheral blood induced by a $KBrO_3$ treatment in vivo. Therefore, PREs containing gallic acid and methyl gallate may be a useful antigenotoxic antioxidant by scavenging free radicals, inhibiting lipid peroxidation and protecting against oxidative DNA damage without exhibiting any pro-oxidant effect.

Keywords

References

  1. Beckman, K. B. and Ames, B. N., The free radical theory of aging matures. Physiol. Rev., 78, 547-581 (1998) https://doi.org/10.1152/physrev.1998.78.2.547
  2. Dizdaroglu, M., Oxidative damage to DNA in mammalian chromatin. Mutat. Res., 275, 331-342 (1992) https://doi.org/10.1016/0921-8734(92)90036-O
  3. Feig, D. I., Reid, T. M., and Loeb, L. A., Reactive oxygen species in tumorigenesis. Cancer Res., 54, Suppl. 7, 1890- 1894 (1994)
  4. Festa, F., Aglitti, T., Duranti, G., Ricordy, R., Perticone, P., and Cozzi, R., Strong antioxidant activity of ellagic acid in mammalian cells in vitro revealed by the comet assay. Anticancer Res., 21, 3903-3908 (2001)
  5. Fugita, Y., Uera, I., Morimoto, Y., Nakajima, M., Hatano, C., and Okuda, T., Studies on inhibition mechanism of auto-oxidation by tannins and flavonoids. II. Inhibition mechanism of coffee tannin isolated from leaves of Artemisia species on lipoxygenase dependent lipid peroxidation. Yakugaku Zasshi, 108, 129-135 (1988) https://doi.org/10.1248/yakushi1947.108.2_129
  6. Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do- Valle, R. M., and Spinelli, A., Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox Rep., 6, 243-250 (2001) https://doi.org/10.1179/135100001101536391
  7. Guyton, K. G. and Kensler, T. W., Oxidative mechanisms in carcinogenesis. Br. Med. Bull., 49, 523-544 (1993) https://doi.org/10.1093/oxfordjournals.bmb.a072628
  8. Hayashi, M., Morita, T., Kodama, Y., Sofuni, T., and Ishidate, Jr, M., The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat. Res., 245, 245-249 (1990) https://doi.org/10.1016/0165-7992(90)90153-B
  9. Honokaa, S., Nose, M., and Ishige, A., Effect of hachimi-jio-gan on scopolamine-induced memory impairment and on acetylcholine content in rat brain. J. Ethnopharmacol., 50, 77-84 (1996) https://doi.org/10.1016/0378-8741(95)01332-6
  10. Huh, Z., Dong-Eu-Bo-Gam, Translated Ed., Namsandang, Seoul, Korea, p. 1160, (1966)
  11. Kang, S. S., Kim, J. S., Yun-Choi H. S., and Han, B. H., Phytochemical Studies on Paeoniae Radix. Kor. J. Pharmacogn., 24, 247-250 (1993)
  12. Kasai, H., Analysis of a form of oxidative DNA damage, 8- hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat. Res., 387, 147-163 (1997) https://doi.org/10.1016/S1383-5742(97)00035-5
  13. Kitagawa, I., Yoshikawa, M., Tsunaga, K., and Tani, T., Studies on MOUTAN CORTEX (2) On the Chemical Constituents. Shoyakugaku Zasshi, 33, 171-177 (1979)
  14. Labieniec, M. and Gabryelak, T., Measurement of DNA damage and protein oxidation after the incubation of B14 Chinese hamster cells with chosen polyphenols. Toxicol. Lett., 155,15-25 (2005) https://doi.org/10.1016/j.toxlet.2004.06.008
  15. Laughton, M. J., Halliwell, B., Evans, P. J., and Hoult, J. R. S., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin. Biochem. Pharmacol., 38, 2859-2865 (1989) https://doi.org/10.1016/0006-2952(89)90442-5
  16. Lin, H. C., Ding, H. Y., and Ko, F. N., Aggregation inhibitory activity of minor acetophenones from Paeonia species. Planta Med., 65, 595-599 (1999) https://doi.org/10.1055/s-1999-14030
  17. Lu, C. Y., Lee H. C., Fahn, H. J., and Wei, Y. H., Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res., 423, 11-21 (1999) https://doi.org/10.1016/S0027-5107(98)00220-6
  18. Lynch, R. E. and Fridovich, I., Permeation of the erythrocyte stroma by superoxide radical. J. Biol. Chem., 253, 1838- 1845 (1978)
  19. Miranda, J. L., Barry, H., Patricia, J. E., and Robin S. H., Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol, and myricetin. Biochemical Pharmacology, 38, 2859-2865 (1989) https://doi.org/10.1016/0006-2952(89)90442-5
  20. Naczk, M., Wanasundara, P. K., and Shahadi, F., Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meas. J. Agric. Food Chem., 40, 445- 448 (1992) https://doi.org/10.1021/jf00015a016
  21. Ng, T. B., Liu, F., and Wang, Z. T., Antioxidative activity of natural products from plants. Life Science, 66, 709-723 (2000) https://doi.org/10.1016/S0024-3205(99)00642-6
  22. Niki, E., Antioxidants in relation to lipid peroxidation. Chem. Phys. Lipid, 44, 227-253 (1987) https://doi.org/10.1016/0009-3084(87)90052-1
  23. Niki, E. and Noguchi, N., Evaluation of antioxidant capacity. What capacity is being measured by which method? IUBMB Life, 50, 323-329 (2000) https://doi.org/10.1080/15216540051081119
  24. Ohkawa, H., Ohishi, N., and Yagi, K., Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 5, 351-358 (1979) https://doi.org/10.1016/0003-2697(79)90738-3
  25. Ohta, H., Ni, J. W., and Matsumoto, K., Paeony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats. Pharmacol. Biochem. Behav., 45, 719-723 (1993) https://doi.org/10.1016/0091-3057(93)90530-7
  26. Okezie I.K., Antonia, M., John, B., and Barry, H., Evaluation of the antioxidant and pro-oxidant actions of gallic acid and its derivatives. J. Agric. Food Chem., 41, 1880-1885 (1993) https://doi.org/10.1021/jf00035a014
  27. Okubo, T., Nagai, F., and Seto, T., The inhibition of phenylhydroquinone- induced oxidative DNA cleavage by constituents of moutan cortex and paeoniae radix. Biol. Pharm. Bull., 23,199-203 (2000) https://doi.org/10.1248/bpb.23.199
  28. Okubo, T., Nagai, F., Ushiyama, K., and Kano, I., Contribution of oxygen radicals to DNA cleavage by quinone compounds derived from phenolic antioxidants, tert-butylhydroquinone and 2,5-di-tert-butylhydroquinone. Toxicol. Lett., 90,11-18 (1997) https://doi.org/10.1016/S0378-4274(96)03823-4
  29. Olive, P. L., Banath, R. E., and Durand, R. E., Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res., 122, 86-94 (1990). https://doi.org/10.2307/3577587
  30. Pryor, W. A. and Tang, R. H., Ethylene formation from methanol. Biochem. Biophys. Res. Com., 81, 498-503 (1978) https://doi.org/10.1016/0006-291X(78)91562-0
  31. Qi, X. G., Protective mechanism of Salvia miltiorrhiza and Paeonia lactiflora for experimental liver damage. Chung Hsi I Chieh Ho Tsa Chih, 11,102-104 (1991)
  32. Rice-Evans, C. A., Miller, N. J., and Paganga, G., Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  33. Robbiano, L., Carrozzino, R., Puglia, C. P., Corbu, C., and Brambilla, G., Correlation between induction of DNA fragmentation and micronuclei formation in kidney cells from rats and humans and tissue-specific carcinogenic activity. Toxicol .Appl. Pharmacol., 161,153-159 (1999) https://doi.org/10.1006/taap.1999.8796
  34. Sai, K., Hayashi, M., Takagi, A., Hasegawa, R., Sofuni, T., and Kurokawa, Y., Effects of antioxidants on induction of micronuclei in rat peripheral blood reticulocytes by potassium bromate. Mutat. Res., 269,113-118 (1992) https://doi.org/10.1016/0027-5107(92)90166-Y
  35. Sakai, Y., Nagase, H., and Ose, Y., Inhibitory action of peony root extract on the mutagenicity of benzo[a]pyrene. Mutat. Res., 244,129-134 (1990) https://doi.org/10.1016/0165-7992(90)90061-N
  36. Schlesier, K,, Harwat, M,, Bohm, V., and Bitsch, R., Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res., 36,177-187 (2002) https://doi.org/10.1080/10715760290006411
  37. Sing, N. P., McCoy, M. T., Tice, R. R., and Schneider, E. L., A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 175, 184-191 (1988) https://doi.org/10.1016/0014-4827(88)90265-0
  38. Sroka, Z. and Cisowski, W., Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol., 41, 753-758 (2003) https://doi.org/10.1016/S0278-6915(02)00329-0
  39. Sugisawa, A., Kimura, M., Fenech, M., and Umegaki, K., Antigenotoxic effects of tea catechins against reactive oxygen species in human lymphoblastoid cells. Mutat. Res., 559, 97- 103 (2004) https://doi.org/10.1016/j.mrgentox.2004.01.002
  40. Watanabe, S., Togashi, S., and Fukui, T., Conrtibution of nitric oxide to potassium bromate-induced elevation of methaemoglobin concentration tin mouse blood. Biol. Pharm. Bull., 25, 1315-1319 (2002) https://doi.org/10.1248/bpb.25.1315
  41. Wu, H. K. and Sheu, S. J., Capillary electrophoretic determination of the constituents of paeoniae radix. J. Chromatogr. A., 753,139-146 (1996) https://doi.org/10.1016/S0021-9673(96)00525-0
  42. Wu, L. T., Chu, C. C., Chung, J. G., Chen, C. H., Hsu, L. S., Liu, J. K., and Chen, S. C., Effects of tannic acid and its related compounds on food mutagens or hydrogen peroxideinduced DNA strands breaks in human lymphocytes. Mutat. Res., 556, 75-82 (2004) https://doi.org/10.1016/j.mrfmmm.2004.07.004
  43. Yoshikawa, M., Uchida, E., Kawaguchi, A., Kitagawa, I., and Yamahara, J., Galloyl-Oxypaeoniflorin, Suffriticosieds A, B, C, and D, Five New Antioxidative glycosides, and suffriticoside E, A Paeonol glycoside, from Chinese Moutan Cortex. Chem. Pharm. Bull., 40, 2248-2250 (1992) https://doi.org/10.1248/cpb.40.2248
  44. Zhang, Y., The effects of nifedipine, diltiazem, and Paeonia lactiflora Pall on atherogenesis in rabbits. Chung Hua Hsin Hsueh Kuan Ping Tsa Chih, 19, 100-103 (1991)
  45. Zhang, W. G. and Zhang, Z. S., Anti-ischemia reperfusion and damage and anti-lipid peroxidatioin effects of paeonol in rat heart. Yao Hsueh Hsueh Pao, 29, 145-148 (1994)
  46. Zheng, W. and Wang, S. Y., Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 49, 5165-5170 (2001) https://doi.org/10.1021/jf010697n