Synthesis and Characterization of a Novel Silicon-Containing Epoxy Resin

  • Park Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Jin Fan-Long (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee Jae-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2005.02.01

Abstract

A novel silicon-containing epoxy resin, the diglycidylether of bisphenol A-silicon (DGEBA-Si), was synthesized and characterized. The properties of the DGEBA-Si epoxy resin cured with 4,4-diaminodiphenyl methane (DDM), including its cure behavior, glass transition temperature, thermal stability, and mechanical strength were investigated. The char yield of the DGEBA-Si/DDM system was higher than that of a commercial DGEBA/DDM system, indicating that the DGEBA-Si epoxy resin showed good flame-retardance. The cured DGEBA-Si/DDM specimens possessed lower glass transition temperatures and higher mechanical properties than DGEBA/DDM specimens. These features were attributed to the introduction of siloxane groups into the main chain of the epoxy resin, which resulted in the improved flexibility of the cured DGEBA-Si/DDM system.

Keywords

References

  1. H. Lee and K. Nevile, Handbook of Epoxy Resin, McGraw- Hill, New York, 1967
  2. J. Frohlich, R. Thomonn, and R. Mulhaupt, Macromolecules, 36, 7205 (2003)
  3. D. Ratna, Macromol. Res., 12, 11 (2004)
  4. S. J. Park and H. C. Kim, J. Polym. Sci.; Part B: Polym. Phys., 39, 121 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<1::AID-POLB10>3.0.CO;2-4
  5. Y. S. Choe and W. H. Kim, Macromol. Res., 10, 259 (2002)
  6. X. Z. Song, S. X. Zheng, J. Y. Huang, P. P. Zhu, and Q. P. Guo, J. Appl. Polym. Sci., 79, 598 (2001)
  7. B. J. P. Jansen, S. Rastogi, H. E. H. Meijer, and P. J. Lemstra, Macromolecules, 32, 6290 (1999)
  8. Y. W. Chen-Yang, H. F. Lee, and C. Y. Yuan, J. Polym. Sci.; Part A: Polym. Chem., 38, 972 (2000)
  9. M. J. Alcon, M. A. Espinosa, M. Galia, and V. Cadiz, Macromol. Rapid Commun., 22, 1265 (2001) https://doi.org/10.1002/1521-3927(20010101)22:1<1::AID-MARC1>3.0.CO;2-T
  10. C. S. Wu, Y. L. Liu, and Y. S. Chiu, Polymer, 43, 4277 (2002)
  11. S. T. Lin and S. K. Huang, J. Polym. Sci.; Part A: Polym. Chem., 34, 1907 (1996)
  12. T. Y. Lo and S. K. Huang, J. Appl. Polym. Sci., 69, 1523 (1998)
  13. T. Nishikubo, A. Kameyama, Y. Kimura, and K. Fukuyo, Macromolecules, 28, 4361 (1995)
  14. S. J. Park and H. C. Kim, J. Polym. Sci.; Part B: Polym. Phys., 39, 121 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<1::AID-POLB10>3.0.CO;2-4
  15. S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, J. Polym. Sci.; Part A: Polym. Chem., 39, 187 (2001) https://doi.org/10.1002/1099-0518(20010101)39:1<1::AID-POLA10>3.0.CO;2-B
  16. D. J. Liaw, Polymer, 38, 5217 (1997)
  17. B. Mouanda, Polymer, 38, 5301 (1997)
  18. C. S, Wu, Y. L. Liu, and Y. S. Chiu, Polymer, 43, 4277 (2002)
  19. S. J. Park, F. L. Jin, and J. R. Lee, Mater. Sci. Eng. A, 374, 109 (2004)
  20. C. D. Doyle, Anal. Chem., 33, 77 (1961)
  21. G. H. Hsiue, W. J. Wang, and F. C. Chang, J. Appl. Polym. Sci., 73, 1231(1999)
  22. C. S. Wu, L. L. Liu, and Y. S. Chiu, Polymer, 43, 4277 (2002)