DOI QR코드

DOI QR Code

Method of Estimating Groundwater Recharge with Spatial-Temporal Variability

시공간적 변동성을 고려한 지하수 함양량의 추정 방안

  • 김남원 (한국건설기술연구원 수자원연구부) ;
  • 정일문 (한국건설기술연구원 수자원연구부) ;
  • 원유승 (건설교통부 한강홍수통제소 하천정보센터)
  • Published : 2005.07.01

Abstract

In Korea, the methods of estimating groundwater recharge can categorized into two groups. One is baseflow separation method by means of groundurater recession curve, the other is water level fluctuation method by using the data from groundwater monitoring wells. Baseflow separation method is based on annual recharge and lumped concept, and water-table fluctuation method is largely dependent on monitoring wells rather than water budget in watershed. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, these methods have various limits to deal with these characteristics. For this purpose, the method of estimating daily recharge rate with spatial variability based on distributed rainfall-runoff model is suggested in this study. Instead of representative recharge rate of large watershed, the subdivided recharge rate with heterogeneous characteristics can be computed in daily base. The estimated daily recharge rate is an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers. Therefore, the newly suggested method could be expected to enhance existing methods.

현재 우리나라에서 주로 사용되는 지하수 함양량 추정방법은 지하수 감수곡선에 의한 기저유출분리법과 관측공의 자료를 이용한 지하수위 변동법으로 대별된다. 기저유출분리법은 연단위기반의 집중형 개념의 접근법을 사용하며, 지하수위변동곡선해석법은 유역단위의 물수지 개념보다는 국지적인 지하수 관측정의 변화에 주로 의존하고 있다. 한편 지하수 함양량은 기후조건, 토지이용, 관개와 수리지질학적 비균질성에 의해 현저한 시공간적 변동성을 나타내고 있어서 위의 두 가지 방법으로는 이같은 특성을 고려하는데 여러 가지 한계를 보인다. 이에 본 연구에서는 준분포형 강우-유출모형인 SWAT모형을 이용하여 공간적변동성을 고려한 일단위 함양량 산정기법을 제시하였다. 이 방법을 이용하면 기존의 유역 대표 함양량 대신 각 소유역의 비균질한 특성을 반영한 함양량의 분포를 산정할 수 있다. 산정된 일단위 함양량은 기후조건 토지이용 및 수리지질학적 비균질성과 토양층에서의 지체등 물리적인 거동까지 반영된 것이어서 기존의 간접적 추정방식에 의한 연단위 함양률을 크게 개선할 수 있을 것으로 기대된다.

Keywords

References

  1. 김성준, 채효석 (2000). '격자기반의 토양수분추적에 의한 지하수 함양량 추정기법 개발.' 한국수자원학회논문집, 제33권 제1호, pp. 61-72
  2. 박창근 (1996). '우리나라 지하수 개발 가능량 추정: 1.개념정립과 기법의 개발.' 지하수환경, 제3권 제1호, pp. 15-20
  3. 배상근, 이승현 (2004). '소유역의 강수에 의한 지하수 함양량 산정.' 한국수자원학회 논문집, 제37권 제5호, pp. 397-406 https://doi.org/10.3741/JKWRA.2004.37.5.397
  4. 이동률(1995). '지하수 감수곡선을 이용한 지하수 함양량 추정과 장기 갈수량 예측.' 박사학위 논문, 고려대학교
  5. 이도훈 (2002). '지하수 순환을 고려한 장기유출 특성해석.' 지표수 수문성분 해석 기술개발 1차년도 연구보고서, 수자원의 지속적 확보기술개발사업 2-2-1과제, pp. 89-95
  6. Andres, G. and R. Egger (1985). 'A new tritium interface method for determining the recharge rate of deep groundwater in the Bavarian Molasse basin.' Journal of Hydrology, Vol. 82. pp.27-38 https://doi.org/10.1016/0022-1694(85)90044-7
  7. Arnold, J. G., P. M. Allen, and G. Bernhardt. (1993). 'A comprehensive surface-groundwater flow model.' Journal of Hydrology, Vol. 142. pp.47-69 https://doi.org/10.1016/0022-1694(93)90004-S
  8. Arnold, J. G. and P. M. Allen (1999). 'Automated methods for estimating baseflow and groundwater recharge from streamflow records. ' Journal of the American Water Resources Association, Vol. 35, No.2, pp. 411-424 https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
  9. Arnold, J. G., R. S. Muttiah, R. Srinivasan, and P. M. Allen(2000). 'Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin.' Journal of Hydrology, Vol. 227, pp.21-40 https://doi.org/10.1016/S0022-1694(99)00139-0
  10. Barnes, B. S. (1939). 'The structure of discharge recession curves.' Transactions of the American Geophysical Union 20, pp. 721-725 https://doi.org/10.1029/TR020i004p00721
  11. Fetter, C. W. (1994). Applied Hydrogeology, Prentice Hall
  12. Horton, R. E. (1939). 'Analysis of runoff-plat experiments with varying infiltration capacity.' Transactions of the American Geophysical Union 20, pp. 693-711 https://doi.org/10.1029/TR020i004p00693
  13. Johnston, K H.(1977). 'A predictive method for groundwater levels.' Master's Thesis, Cornell University, Ithaca, N. Y.
  14. Memon, B. A. (1995). 'Quantitative analysis of springs.' Environmental Geology, Vol. 26, 111-120 https://doi.org/10.1007/BF00768324
  15. Meyboom, P. (1961). 'Estimating groundwater recharge from stream hydrology.' Journal of Geophysical Research, Vol. 66, No. 4, pp. 1203-1214 https://doi.org/10.1029/JZ066i004p01203
  16. Moon, S. K., Nam C. Woo, and Kwang S. Lee (2004). 'Statistical analysis of hydrographs and water-level fluctuation to estimate groundwater recharge.' Journal of Hydrology Vol. 292, pp. 198-209 https://doi.org/10.1016/j.jhydrol.2003.12.030
  17. Rutledge, A. T. (1998). 'Computer programs for describing the recession of groundwater recharge and for estimating mean groundwater recharge and discharge from stream records-Update.' U.S. Geological Survey Water Resources Investigations Report 98-4148, p. 44
  18. Sangrey, D. A., K. O. Harrop-Wllliams, and J. A. Klaiber (1984). 'Predicting groundwater response to precipitation.' ASCE, Journal of Geotechnical Engineering, Vol. 11 No. 7, pp. 957-975
  19. Saxton, K. E, W.J. Rawls, J.S. Romberger, and R. I. Papendick (1986). 'Estimating generalized soil-water characteristics from texture.' Soil Sci. Soc. Amer. J., Vol. 50, No. 4, pp.1031-1036 https://doi.org/10.2136/sssaj1986.03615995005000040039x
  20. Sharma, M.L. (1989). Groundwater Recharge, Balkema, Brookfield, VT, p. 323
  21. Solomon, D. K., S.L. Schief, R. J. Poreda and W. B. Clarke (1993). 'A validation of 3H/3He method for determining groundwater recharge,' Water Resources Research, Vol. 29, No. 9, pp. 2951-2962 https://doi.org/10.1029/93WR00968
  22. Sophocleous, M. A. (1991). 'Combining the soil water balance and water level fluctuation methods to estimate natural groundwater recharge : practical aspects.' Journal of Hydrology Vol. 124, pp. 229-241 https://doi.org/10.1016/0022-1694(91)90016-B
  23. Theis, C. W. (1937). 'Amount of groundwater recharge in the southern high plains.' Transactions of the American Geophysical Union 18, p. 564
  24. Venetis, C. (1962). 'A study of recession of unconfined aquifers.' Bulletins of International Association of Hydrololgical Science, Vol. 14, No. 4, pp. 119-125
  25. Winter, T. C., S. E. Mallory, T. R. Allen, and D. O. Rosenberry (2000). 'The use of principal component analysis for interpreting groundwater hydrographs.' Ground Water, Vol. 38, No. 2, pp. 234-246 https://doi.org/10.1111/j.1745-6584.2000.tb00335.x

Cited by

  1. Analysis of Spatiotemporal Changes in Groundwater Recharge and Baseflow using SWAT and BFlow Models vol.30, pp.5, 2014, https://doi.org/10.15681/KSWE.2014.30.5.549
  2. Comparison of Natural Flow Estimates for the Han River Basin Using TANK and SWAT Models vol.45, pp.3, 2012, https://doi.org/10.3741/JKWRA.2012.45.3.301
  3. Estimation of baseflow considering recession characteristics of hydrograph vol.16, pp.2, 2014, https://doi.org/10.17663/JWR.2014.16.2.161
  4. Automatic Calibration of SWAT Model Using LH-OAT Sensitivity Analysis and SCE-UA Optimization Method vol.39, pp.8, 2006, https://doi.org/10.3741/JKWRA.2006.39.8.677
  5. Annual Groundwater System Change in Geum-gang Basin vol.44, pp.1, 2011, https://doi.org/10.9719/EEG.2011.44.1.049
  6. Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions vol.18, pp.5, 2013, https://doi.org/10.7857/JSGE.2013.18.5.065
  7. Development of Web-Based RECESS Model for Estimating Baseflow Using SWAT vol.6, pp.4, 2014, https://doi.org/10.3390/su6042357