DOI QR코드

DOI QR Code

Modelling of Sediment Transportation and Deposition in GIS

GIS를 이용한 토사이송 및 퇴적분포 예측기법 개발

  • 손광익 (영남대학교 토목도시환경공학부)
  • Published : 2005.03.01

Abstract

In this study, a two-dimensional model for identifying areas of erosion and deposition over a basin was developed based on the mass balance principle in a distributed model. The program consists of three steps: (a) estimation of soil erosion; (b) determination of flow amount and direction; and (c) estimation of mass balance. Soil erosion was estimated with USLE. A single-direction (SF) and a multi-direction flow algorithm (MF) were applied to estimate slope length (L). The Maximum Downhill Slope Method (MDS) and the Neighborhood Method (NBH) were used to estimate the slope degree (S). Sediment transport resulting from eroded soil was estimated using Ferro's (1998) and Swift's (2000) sediment delivery ratio (DR). The model was validated by comparing the predicted sediment yields for three basins with measured data. The developed algorithm showed that Ferro's DR method combined with the MDS and MF produced the best agreement with the dredging records of three agricultural reservoir basins in Korea.

본 연구에서는 분포형 모형과 셀의 유입, 유출 및 저류량에 대한 질량보존의 법칙을 이용하여 토사의 이송 및 퇴적분포예측기법을 개발하였다. 모형은 (a) 토사침식 예측 (b) 흐름방향 및 유출량 산정 그리고 (c) 토사에 대한 질량보존의 법칙에 따른 셀별 토사이동량 산정의 세 단계로 구성되었다. 토양침식은 범용토양손실공식(USLE)을 활용하였으며 분포형 모형에서의 경사장(L) 산정은 일방향(SF)과 다방향 흐름 알고리즘(MF)을 사용하였다. 경사(S) 산정을 위해서는 Maximum Downhill Slope Method (MDS) and the Neighborhood Method (NBH) 기법을 활용하였고 셀별 토양의 이동은 Ferro등(1998)과 Swift (2000)의 토사전달률(DR)개념을 적용하였다. 개발된 모형은 시험유역의 실측 토사량과의 비교검토를 통하여 검증하였다. 3개의 농업용 저수지 유역에 적용한 결과, Ferro의 토사전달률 산정공식과 MDS, MF 기법을 이용한 해석이 저수지의 운영기록과 가장 유사한 결과를 제시한다는 사실을 확인할 수 있었다.

Keywords

References

  1. 조효섭 (2003). GIS를 이용한 등시간도 작성의 평가, 한국수자원학회 논문집, 제 36권 6호, pp. 925-936 https://doi.org/10.3741/JKWRA.2003.36.6.925
  2. Ferro, V., and Minacapilli, M. (1995). 'Sediment delivery processes at basin scale.' Hydrological Sciences Journal, Vol. 40, No. 6, pp. 703-717 https://doi.org/10.1080/02626669509491460
  3. Ferro, V., Porto, P., and Tusa, G. (1998). 'Testing a distributed approach for modelling sediment delivery.' Hydrological Sciences Journal, Vol. 43, No. 3, pp. 425-442 https://doi.org/10.1080/02626669809492136
  4. Hickey, R. A. Smith, and P. Jankowski (1994). 'Slope length calculations from a DEM within ARC/INFO GRID: Computers.' Environment and Urban Systems, Vol. 18, No. 5, pp. 365-380 https://doi.org/10.1016/0198-9715(94)90017-5
  5. McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1987). 'Revised slope steepness factor for the Universal Soil Loss Equation.' Transactions of the ASAE, Vol.30(5): Sep.-Oct., pp.1387-1396 https://doi.org/10.13031/2013.30576
  6. McCool, D.K., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1989). 'Revised slope length factor for the Universal Soil Loss Equation.' Transactions of the ASAE, Vol. 32(5): Sep.-Oct., pp.1571-1576 https://doi.org/10.13031/2013.31192
  7. Moore, I.D., and Wilson, J.P. (1992). 'Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation.' J. Soil and Water Cons. 47(5), pp. 423-428
  8. Quinn. P., Beven, K., Chevaller, P., and Planchon, O. (1991). 'The Prediction of hillslope flow paths for distributed hydrological modelling using Digital Terrain Models.' Hydrological Processes, Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  9. Sun, G., and McNulty, S.G. (1998). Modeling soil erosion and transport on forest landscape, Southem Global Change Program USDA Forest Service 1509 Varsity Dr. Raleigh, NC 27606. pp. 189-198
  10. Swift, L.W. Jr. (2000). Equation to dissipate sediment from a grid cell downslope. USDA Forest Service
  11. Wischmeier W.H., and Smith, D.D. (1965). Predicting rainfall erosion losses from cropland East of the Rocky Mountains. US. Dep. Agric., Agricultural Research service. Agricultural Handbook. No. 282

Cited by

  1. Estimation of the Optimal Dredge Amount to Maintain the Water Supply Capacity on Asan-Lake vol.48, pp.2, 2006, https://doi.org/10.5389/KSAE.2006.48.2.045
  2. Application of RUSLE and MUSLE for Prediction of Soil Loss in Small Mountainous Basin vol.103, pp.1, 2014, https://doi.org/10.14578/jkfs.2014.103.1.98
  3. Study on Training levee Dimension for Reduction of River Mouth Occlusion vol.16, pp.1, 2014, https://doi.org/10.17663/JWR.2014.16.1.139
  4. A Combined Model of Hydrology, Hydraulics, Erosion and Sediment Transport at Watershed Scale vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.351