Physiological Studies on Acute Water-temperature Stress of Juvenile Abalone, Haliotis discus hannai

급격한 수온 스트레스에 따른 전복, Haliotis discus hannai 치패의 생리학적 연구

  • Kim Tae-Hyung (Faculty of Applied Marine Science, Cheju National University) ;
  • Yang Moon-Hyu (Faculty of Applied Marine Science, Cheju National University) ;
  • Choe Mi-Kyung (Shellfish Genetic & Breeding Research Center) ;
  • Han Seok-Jung (Shellfish Genetic & Breeding Research Center) ;
  • Yeo In-Kyu (Faculty of Applied Marine Science, Cheju National University)
  • 김태형 (제주대학교 해양과학대학 해양과학부) ;
  • 양문휴 (제주대학교 해양과학대학 해양과학부) ;
  • 최미경 (국립수산과학원 패류육종연구센터) ;
  • 한석중 (국립수산과학원 패류육종연구센터) ;
  • 여인규 (제주대학교 해양과학대학 해양과학부)
  • Published : 2005.02.01

Abstract

This study was conducted to investigate antioxidant enzyme activity (catalase and superoxide dismutase) and Heat Shock Protein 70 (HSP70) mRNA variation in hepatopancreas of abalone (Haliotis discus hannai) cultured under several acute water temperatures. Abalones were cultured at 10, 15, 20, 25 and $30^{\circ}C$, for 0, 6, 12, 24 and 48 hours, respectively. The HSP70 mRNA expression in hepatopancreas was more increased at $30^{\circ}C$ compared to those at 10. 15, 20 (control) and $25^{\circ}C$. The superoxide dismutase (SOD) activity was increased in hepato-pancreas at all water temperature conditions compared to the control ($20^{\circ}C$). The SOD activity at high water temperature (25 and $30^{\circ}C$) tended to be increased after 12 hours, and was increased immediately after exposure to low water temperature (10 and $15^{\circ}C$). and then was recovered to starting level after the increase. Also, catalase (CAT) activity in hepatopancreas was increased in all the groups except for at $10^{\circ}C$ than the control ($20^{\circ}C$). Survival rate of abalone was $100\%$ at 10, 15, 20 and $25^{\circ}C$, but $92\%$ at $30^{\circ}C$. Thus, according to our study, when abalone is appeared at $20^{\circ}C$, defense mechanism against stress at low water temperature can be accelerated to be stabilized at about $5^{\circ}C$. In the case of exposure of abalone to high water temperature, antioxidant enzyme and HSP70 expression were increased due to elevated physiological stimulation factor, such as temperature.

본 연구는 전복, Haliotis discus hannai 치패를 이용하여 급격한 수온변화 스트레스에 따른 간부위에서의 항산화효소 및 HSP70 mRNA의 변화를 조사하였다. 실험구는 10, 15, 20(대조구), 25 및 $30^{\circ}C$로 설정하였으며, 측정 시간은 0, 6, 12, 24 및 48h후에 측정하였다. 그 결과 HSP70 mRNA의 발현은 다른 실험구들과 비교하여 $30^{\circ}C$ 실험구에서만 유의적으로 높게 발현되었으며, SOD의 경우 모든 실험구에서는 증가하는 경향을 나타내었으나, 고수온에서 12 h 이후 급격한 상승을 나타내었고, 저수온에서는 수온 스트레스 자극 직후에 증가한 후 회복되는 경향을 나타내었다. CAT에서는 실험 개시 후부터 고수온 실험구에서 지속적인 상승을 나타내었다. 실험기간 중의 생존율은 $30^{\circ}C$ 실험구를 제외한 모든 실험구에서 $100\%$의 생존율을 나타내었으며, $30^{\circ}C$ 실험구에서는 $92\%$의 생존율을 나타내었다. 이상의 결과로, 20"C에서 순치된 전복은 저수온 스트레스에 대한 생리학적 방어기작이 약 $5^{\circ}C$ 내외의 고수온 스트레스에 대한 생리학적 방어기작과 비교하여 보다 빠르게 작용하여 안정화하는 것으로 나타났으며, 일정 수온 이상의 고수온에 노출되었을 경우에는 생체 내 과도한 생리학적 방어 기작이 작용하여 항산화효소 및 HSP70 발현이 증가하는 것으로 나타났다.

Keywords

References

  1. Agnar S. and K. I. Albert, 2003. Size dependent variation in optimum growth temperature of red abalone (Haliotis rufescens). Aquaculture, 224, 353-362 https://doi.org/10.1016/S0044-8486(03)00241-2
  2. Aksnes, A. and L. R. Njaa, 1981. Catalase, Glutathione peroxidase and superoxide dismutase in different fish species. comp. Biochem. Physiol., 69B, 893-896
  3. Amro M. H.., D. P. Cheney and G. N. Cherr, 2003. Phenotypic plasticity of HSP70 and HSP70 gene expression in Pacific oyster (Crassostrea gigas): Implications for thermal limits and induction of thermal tolerance. BioI. Bull. 205, 160-169 https://doi.org/10.2307/1543236
  4. Brown, P. B., K. A. Willson, J. E. Wetzel II and B. Hoene, 1995. Increased densities result in reduced weight gain of crayfish Orconectes virilis. J. World Aquacul. Soc, 26, 165-171 https://doi.org/10.1111/j.1749-7345.1995.tb00240.x
  5. Chance, B., H. Sice and A. Boveris, 1979. Hydroperoxide metabolism in mammalian organs. Physiol, Rev., 59, 527-605 https://doi.org/10.1152/physrev.1979.59.3.527
  6. Chen, J. C. and W. C. Chen, 2000. Salinity tolerance of Haliotis diversicalor supertexta at different salinity and temperature levels. Aquaculture, 181, 191-203 https://doi.org/10.1016/S0044-8486(99)00226-4
  7. Cheng W., I. S. Hsiao, C. H. Hsu and J. C. Chen, 2004. Change in water temperature on the immune response of Taiwan abalone Haliotis diversicolor supertexta and susceptibikity to Vibrio parahaemolyticus. Fish & Shellfish Immunology. 17, 235-243 https://doi.org/10.1016/j.fsi.2004.03.007
  8. Cho, K. S., E. Y. Min and J. C. Kang, 2002. Changes of haematological constituents in the nile tilapia, Oreochromis niloticus to HCB and PCBs. J. Kor. Fish. Soc., 35, 110-114
  9. Ferraris, M., S. Radice, P. Catalani, M. Francolini, L. Marabini and E. Chiesara, 2002. Early oxidative damage in primary cultured trout hepatocytes: a time course study. Aquatic Toxicology, 59, 283-296 https://doi.org/10.1016/S0166-445X(02)00007-3
  10. Forman, H J. and I. Fridovich, 1973. Superoxide dismutase: A comparison of rate constant. Arch. Biochem. Biophys., 158, 396p https://doi.org/10.1016/0003-9861(73)90636-X
  11. Gabryelak, T., M. Piatrowska, W. Leyko and G. Peres, 1983. Seasonal variation in the activities of peroxide metabolism enzymes in erythrocytes of freshwater fish species. Comp. Biochem. Physiol., 75C, 383-385
  12. Goldberg, B. and A. Stem, 1977. The role of the superoxide anion as a toxic species in the erythrocyte. Arch. Biochem. Biophys., 178, 218-225 https://doi.org/10.1016/0003-9861(77)90187-4
  13. Harris, J. O., G. B. Maguire, S. J. Edwards and D. R. Johns, 1999. Low dissolved oxygen reduces growth rate and oxygen consumption rate of juvenile greenlip abalone, Haliotis laevigata Donovan. Aquaculture, 174,265-278 https://doi.org/10.1016/S0044-8486(99)00022-8
  14. Harris, J. O., G. B. Maguire, S. J. Edwards and S. M. Hindrum, 1998. Effect of ammonia on growth and oxygen consumption rate for juvenile greenlip abalone, Haliotis laevigata Donovan. Aquaculture, 160, 259-272 https://doi.org/10.1016/S0044-8486(97)00249-4
  15. Kim, J. K. and J .H Kim, 2001. Diffusion modeling of cold discharge on costal waters. J. Fish. Mar. Sci. Edu., 13, 132-145
  16. Laughlin, R. B. and J. M. Neff, 1980. Influence of temperature, salinity, and phenanthrene (a petroleum derived hydrocarbon) on the respiration of larval mud crabs Rhithropanopeus harristii. Est. Coast. Mar. Sci., 10, 655-669 https://doi.org/10.1016/S0302-3524(80)80094-6
  17. Laughlin, R. B. and J. M. Neff, 1981. Ontogeny of respiratory and growth responses of larval mud crabs Rhithropanopeus harrisii exposed to different temperatures, salinityies, and naphthalene concentrations. Mar. Ecol. Prog. Ser., 5, 319-332 https://doi.org/10.3354/meps005319
  18. Laughlin, R. B. and O. Linden, 1983. Oil pollution and Baltic mysid: Acute and chronic effects of the Water soluble fractions of light fuel oil on the mysid shirmp Neomysis integer. Mar. Ecol.Porg. Ser., 12, 29-41 https://doi.org/10.3354/meps012029
  19. Lowry, O. H, N. J. Rosenbrought., A. L. Farr and R. J. Randall, 1951. Protein measurement with the Folin-phenol reagent. J. BioI. Chern., 193,265-275
  20. Marklund, S. and G. Marklund, 1974. Involvement of the superoxide anion radical in the antioxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 47, 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  21. Maule, A. G., R. A. Tripp, S. L. Kaattari and C. B. Schreck, 1989. Stress alters immuno function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol, 120, 135-142 https://doi.org/10.1677/joe.0.1200135
  22. Moody, C. S. and H. M. Hassan, 1982. Mutagenicity of oxygen free radicals. Proc. Natl. Acad. Sci., 79, 2855-2859 https://doi.org/10.1073/pnas.79.9.2855
  23. Nelson D. P. and L. A. Kiesow, 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at $25^{\circ}C% (with mola extinction coefficients of $H_{2}O_{2}$ solutions in the UV). Anal Biochem. 49, 474-478 https://doi.org/10.1016/0003-2697(72)90451-4
  24. Parihar, M. S., A. K. Dubey, T. Javeri and P. Prakash, 1996. Changs in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated tempeature. J.Therm. BioI., 21, 323-330 https://doi.org/10.1016/S0306-4565(96)00016-2
  25. Parihar, M. S., T. Javeri, T. Hemnani, A. K. Dubey and P. Prekash, 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J. Therm. BioI., 22, 151-156 https://doi.org/10.1016/S0306-4565(97)00006-5
  26. Pedro E. S., O. Lucia, M. Mario, and B. Horacio, 2004. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (hanley, 1856). Aquaculture, 229, 377-387 https://doi.org/10.1016/S0044-8486(03)00327-2
  27. Simon, R. H, C. H. Scoggin and D. Patterson, 1981. Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. J. BioI. Chern., 256, 7181-7186
  28. Snyder, M. J., E. Givertz and E. P. Mulder, 2001. Induction of marine molluskstress proteins by chemical or physical stress. Arch. Environ. Contam. Toxical., 41, 22-29 https://doi.org/10.1007/s002440010217
  29. Tsuchiya, M., 1983. Mass mortality in a population of the mussel Mytilus edulis L. caused by high temperature on rody shores. J. Exp. Mar. BioI. Ecol., 66, 101-111 https://doi.org/10.1016/0022-0981(83)90032-1
  30. Vijayan, M. M. and T. W. Moon, 1994. The stress response and plasma disappearance of corticostreiod and glucose in a marine teleost sea raven. Can. J. Zool., 72, 379-386 https://doi.org/10.1139/z94-054
  31. Wdzieczak, J., G. Zalesna., A. Bartowiak, H. Witas and W. Leyko, 1981. Comparative studies on superoxide dismutase, catalase and peroxidase level in erythrocytes of different fish species. Comp. Biochem. Physiol., 68B, 357-358
  32. Welch, W. J., 1991. The role of heat-shock proteins as molecular chaperones. Curr. Opin. Cell BioI., 3, 1033-1038 https://doi.org/10.1016/0955-0674(91)90125-I
  33. Wendel, A. and S. Feuerstein, 1981. Drug-induced lipid peroxidation in mice-1. Modulation by monoxygenase activity, glutadnone and selenium status. Biochem Pharmacol., 30, 2513-2520 https://doi.org/10.1016/0006-2952(81)90576-1
  34. Yang, J. H. and I. K. Yeo, 2004. Physiological studies on acute water-temperature stress of olive flounder (Paralichthys olivaceus). Kor. J. Ichthyol., 16, 19-26
  35. Young, D., E. Roman., C. Moreno., R. O'Brien and W. Born, 1993. Molecular chaperones and the immune response. Phyl. Trans.R. Soc. London, 339B, 363-367