DOI QR코드

DOI QR Code

A Kinetic Study for Exopolysaccharide Production in Submerged Mycelial Culture of an Entomopathogenic Fungus Paecilomyces tenuipes C240

동충하초 Paecilomyces tenuipes C240의 균사체 배양에 의한 세포외 다당체 생산의 동력학적 연구

  • Published : 2005.02.01

Abstract

The unstructured model was tested to describe mycelial growth, exopolysaccharide formation, and substrate consumption in submerged mycelial culture of Paeeiliomyees tenuipes C240. The Logistic equation for mycelial growth, the Luedeking-Piret equation for exopolysaccharide formation, and Luedeking­Piret-like equations for glucose consumptions were successfully incorporated into the model. The value of the key kinetic constants were: maximum specific growth rate ${\mu}m,\;0.7281\;h^{-1};$ growth­associated constant for exopolysaccharide production $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth associated constant for exopolysaccharide production $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient $(m_s),\;0.0572g\;(g\;cells)^{-1}$. When compared with batch experimental data, the model successfully provided a reasonable description for each parameter during the entire growth phase. The model showed that the production of exopolysaccharide in P. tenuipes C240 was growth-associated. The model tested in the present study can be applied to the design, scale-up, and control of fermentation process for other kinds of basidiomycetes or ascomycetes.

동충하초 Paecilomyces tenuipes C240의 균사체 배양과정에서 균사체 성장, 세포외 다당체 생산, 기질감소 속도를 표현할 수 있는 동력학적 모델을 제시하였다. 균사체 성장은 Logistic식을, 세포외 다당체 생산은 Luedeking-Piret 식을, 기질소모는 Luedeking-Piret 유사식을 각각 적용함으로써, 전체 균사체 배양과정을 예측할 수 있었다. 모델식에서 사용된 주요 kineti, constant들은 다음과 같다: 균사체의 최대 비성장속도${\mu}m,\;0.7281\;h^{-1};$; 다당체 생산에서의 growth-associated constant $(\alpha),\;0.1743g(g\;cells)^{-1}$; non-growth-associated constant $(\beta),\;0.0019g(g\;cells)^{-1}\;;$ maintenance coefficient ($(m_s),\;0.0572g\;(g\;cells)^{-1}$·5L 발효조에서 얻은 균사체 성장, 세포외 다당체 생산, 기질감소 속도자료들을 모델에서 예측한 결과와 비교한 결과 서로 잘 일치하는 것으로 보아, 본 연구에서 제안된 모델식은 이 동충하초 균사체 배양공정의 scale-up등의 프로세스 설계에 응용가능 할 것이며, 다른 종류의 동충하초 균사체 배양공정에도 적용가능 할 것으로 판단된다.

Keywords

References

  1. Marra, M. 1990. Structural characterization of the exocellular polysaccharides from Cyanospira capsulata. Carbohydr. Res. 197, 338-344 https://doi.org/10.1016/0008-6215(90)84160-V
  2. Low, D., J. A. Ahlgren, D. Horne, D. J. Mcmahon, C. J. Oberg, J. R Broadbent. 1998. Role of Streptococcus thermophilus MR-IC capsular extracellular polysaccharide in cheese moisture retention. Appl. Environ. Microbiol. 64, 2147-2151
  3. Fang, Q. H. and J. J. Zhong. 2002. Submerged fermentation of higher fungus Ganodenna lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem. Eng. J. 10, 61-65 https://doi.org/10.1016/S1369-703X(01)00158-9
  4. Yang, F. C. and C. B. Lian. 1998. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochem. 33, 547-553 https://doi.org/10.1016/S0032-9592(98)00023-5
  5. Nam, K. S., Y. S. Jo, Y. H. Kim, J. W. Hyun, H. W. Kim. 2001. Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Peacilomyces tenuipes. Life Sci. 69, 229-237 https://doi.org/10.1016/S0024-3205(01)01125-0
  6. Nilanonta, C, M. Isaka, P. Kittakoop, P. Palittapongarnpim, S. Kamchonwongpaisan, D. Pittayakhajonwut, M. Tanticharoen, Y. Thebtaranonth. 2000. Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BBC 1614. Planta Medica 66, 756-758 https://doi.org/10.1055/s-2000-9776
  7. Nilanonta, C., M. Isaka, P. Kittakoop, S. Trakulnaleamsai, M. Tanticharoen, Y. Thebtaranonth. 2002. Precursor-directed biosynthesis of beauvericin analogs by the insect pathogenic fungus Paecilomyces tenuipes BBC 1614. Tetrahedron 58, 3355-3360 https://doi.org/10.1016/S0040-4020(02)00294-6
  8. Trilli, A. Kinetics of secondary metabolite production. 1990. Microbial growth dynamics (R.K. Poole, M.J. Bazin, C.W. Keevil eds.) pp.102-126, IRL Press, Oxford University Press, Oxford
  9. Sinclair, C. G. and B. Kristiansen. 1987. Fermentation kinetics and modelling. Open Univ. Press, Milton Keynes
  10. Garca-Ochoa, F., V. E. Santos, A. Alcn. 1998. Metabolic structured kinetic model for xanthan production. Enzyme Microb. Technol. 23, 75-82 https://doi.org/10.1016/S0141-0229(98)00014-3
  11. Amrane, A. and Y. Prigent. 1999. Analysis of growth and production coupling for batch cultures of Lactobacillus helveticus with the help of an unstructured model. Process Biochem. 34, 1-10 https://doi.org/10.1016/S0032-9592(97)90097-2
  12. Xie, D. M., D.-H Liu, T.-Z Liu. 2001. Modeling of glycerol production by fermentation in different reactor states. Process Biochem. 36, 1225-1232 https://doi.org/10.1016/S0032-9592(01)00164-9
  13. Amrane, A. 2002. Unstructured model for the decline phase of batch cultures of Lactobacillus helveticus growing on supplemented whey permeate. Biochem. Eng. J. 10, 9-15 https://doi.org/10.1016/S1369-703X(01)00148-6
  14. Mohammad, F. H. A., S. M. Badr-Eldia, O. M. EI-Tayeb, O. A. Abdel-Rahman. 1995. Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenerg. 8, 121-129 https://doi.org/10.1016/0961-9534(95)00092-L
  15. Garca-Ochoa, F., V. E. Santos, L. Naval, E. Guardiola, B. Lpez. 1999. Kinetic model for anaerobic digestion of livestock manure, Enzyme Microb. Technol. 25, 55-60 https://doi.org/10.1016/S0141-0229(99)00014-9
  16. Tang, Y. J. and J. J. Zhong. 2004. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem. Eng. J. 21, 259-264 https://doi.org/10.1016/j.bej.2004.06.008
  17. Wen, Z. Y. J. J. Zhong. 1997. Effects of initial phosphate concentration on physiological aspects of suspension cultures of rice cells: A kinetic study. J. Ferment. Bioeng. 83, 381-385 https://doi.org/10.1016/S0922-338X(97)80146-8
  18. Terefe, N. S., A. V. Loey, M. Hendrickx. 2004. Modelling the kinetics of enzyme-eatalysed reactions in frozen systems: the alkaline phosphatase catalysed hydrolysis of di-sodiump-nitrophenyl phosphate. Inn. Food Sci. Emerg. Technol. 335-344
  19. Shi, X. M., H. J. Liu, X. W. Zhang, F. Chen. 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34, 341-347 https://doi.org/10.1016/S0032-9592(98)00101-0
  20. Sariana, M., J. Teixeira, A. Rodrigues. 2000. Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512(f). Biochem. Eng. J. 4, 177-188 https://doi.org/10.1016/S1369-703X(99)00047-9
  21. Luedeking, R. and E. L. Piret. 1959. A kinetic study of the lactic acid fermentation: batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 4, 231-241
  22. Elibol, M. and F. Mavituna. 1999. A kinetic model for actinorhodin production by Streptomyces coelicolor A3(2). Process Biochem. 34, 625-631 https://doi.org/10.1016/S0032-9592(98)00136-8
  23. Xu, C. P., S. W. Kim, H. J. Hwang, J. W. Choi, J. W. Yun. 2003. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. Process Biochem. 38, 1025-1030 https://doi.org/10.1016/S0032-9592(02)00224-8
  24. Bae, J. T., J. Sinha, J. P. Park, C. H. Song, J. W. Yun. 2000. Optimization of submerged culture conditions for exobiopolymer production by Paecilomyces japonica. J. Microbiol. Biotechnol. 10, 482-487
  25. Liu, L. Z., L.-P Weng, Q. -L Zhang, H. Xu, L.-N Ji. 2003. A mathematical model for gluconic acid fermentation by Aspergillus niger. Biochem. Eng. J. 14, 137-142 https://doi.org/10.1016/S1369-703X(02)00169-9