DOI QR코드

DOI QR Code

Analysis and Selection of Microsatellites Markers for Individual Traceability System in Hanwoo

한우 생산이력제에 활용 가능한 Microsatellite의 분석과 선발

  • Lim, H.T. (Division of Applied Life Science, Gyeongsang National University) ;
  • Min, H.S. (Division of Applied Life Science, Gyeongsang National University) ;
  • Moon, W.G. (Division of Applied Life Science, Gyeongsang National University) ;
  • Lee, J.B. (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, J.H. (Division of Applied Life Science, Gyeongsang National University) ;
  • Cho, I.C. (National Institute of Subtropical Agriculture, R. D. A.) ;
  • Lee, H.K. (Genetic Informatics Center, Hankeong National University) ;
  • Lee, Y.W. (GenDocs Cooperation) ;
  • Lee, J.G. (Division of Applied Life Science, Gyeongsang National University) ;
  • Jeon, J.T. (Division of Applied Life Science, Gyeongsang National University)
  • 임현태 (경상대학교 응용생명과학부) ;
  • 민희식 (경상대학교 응용생명과학부) ;
  • 문원곤 (경상대학교 응용생명과학부) ;
  • 이재봉 (경상대학교 응용생명과학부) ;
  • 김재환 (경상대학교 응용생명과학부) ;
  • 조인철 (농촌진흥청 난지농업연구소) ;
  • 이학교 (한경대학교 유전정보연구소) ;
  • 이용욱 ((주)젠닥스) ;
  • 이정규 (경상대학교 응용생명과학부) ;
  • 전진태 (경상대학교 응용생명과학부)
  • Published : 2005.08.31

Abstract

To test applicability to the Hanwoo traceability system, twenty microsatellite markers were selected and analyzed. MSA, CERVUS, FSTAT, GENEPOP, API_CALC and PHYLIP software was employed serially to estimate heterozygosity, polymorphic information content, F-statistics, identity probability, exclusion probability and genetic distance. Eleven microsatellite markers(TGLA53, TGLA227, ETH185, TGLA122, BM4305, INRA23, ILSTS013, BMS1747, BM2113, BL1009, and ETH3) were selected based on their high heterozygosity values. Identity probability using these markers is one hundred times higher than when using StockMakersTM of Applied Biosystems. This indicates the selected microsatellite markers are appropriate and effective for use in the Hanwoo traceability system. Additionally, estimates of DA genetic distance and pairwise-FST can be utilized to identify genetic relationships between adjacent farms.

한우의 생산이력제에 활용 가능한 20종의 microsatellite marker를 선정하고 다형성지수, F-통계량, 동일개체 출현확률, 친자감별 확률 및 유전적 거리지수 등을 MSA, CERVUS, FSTAT, GENEPOP, API-CALC 및 PHYLIP 프로그램 등을 연계적으로 활용하여 추정하였다. Heter- ozygosity 추정치에 근거하여 선발한 11개의 microsatellite(TGLA53, TGLA227, ETH185, TGLA122, BM4305, INRA23, ILSTS013, BMS1747, BM2113, BM2113, BL1009와 ETH3)는 Applied Biosystems사의 StockMakersTM와 비교하여 100배 정도의 동일개체 출현확률이 낮아 한우의 생산이력제 적용에 보다 효율적인 것으로 나타났다. 또한 DA 유전적 거리지수와 pairwise-FST 추정치를 활용하여 근접지역의 농장간 근연관계의 정도를 파악할 수 있는 자료로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Achmann, R., Curik, I., Dovc, P., Kavar, T., Bodo, I., Habe, F., Marti, E., Sollmer, J. and Brem, G. 2004. Microsatellite diversity, population subdivision and gene flow in the Lipizzan horse. Anim. Genet. 35:285-292 https://doi.org/10.1111/j.1365-2052.2004.01157.x
  2. Ayres, K. L. and Overall, A. D. J. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Molecular Ecology Notes 4:315-318 https://doi.org/10.1111/j.1471-8286.2004.00616.x
  3. Ayub, Q., Mansoor, A., Ismail, M., Khaliq, S., Mohyuddin, A., Hameed, A., Mazhar, K., Rehman, S., Siddiqi, S., Papaioannou, M., Piazza, A., Cavalli-Sforza, L. L. and Mehdi, S. Q. 2003. Reconstruction of human evolutionary tree using polymorphic autosomal microsatellites. Am. J. Phys. Anthropol. 122:259-268 https://doi.org/10.1002/ajpa.10234
  4. Barendse, W., Armitage, S. M., Kossarek, L. M., Shalom, A., Kirkpatrick, B. W., Ryan, A. M., Clayton, D., Li, L., Neibergs, H. L. and Zhang, N. 1994. A genetic linkage map of the bovine genome. Nat. Genet. 6:227-235 https://doi.org/10.1038/ng0394-227
  5. Borrell, Y. J., Pineda, H., McCarthy, I., Vazquez, E., Sanchez, JA. and Lizana, G. B. 2004. Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L. Heredity 92:585-593 https://doi.org/10.1038/sj.hdy.6800477
  6. Dieringer, D. and Schltterer, C. 2002. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes 3(1):167-169
  7. Fang, M., Hu, X., Jiang, T., Braunschweig, M., Hu, L., Du, Z., Feng, J., Zhang, Q., Wu, C. and Li, N. 2005. The phylogeny of Chinese indigenous pig breeds inferred from microsatellite markers. Anim. Genet. 36:7-13 https://doi.org/10.1111/j.1365-2052.2004.01234.x
  8. Felsenstein, J. 2004. A package of programs for inferring phylogenies (version 3.63). Available from http://evolution.gs.washington.edu/phylip.html
  9. Goudet, J. 2001. FSTAT. a program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3). Available from http://www.unil.ch/izealsoftware/fstat.html
  10. Glowatzki-Mullis, M.-L., Gaillard, C., Wigger, G. and Fries, R. 1995. Microsatellite-based parentage control in cattle. Anim. Genet. 26:7-12 https://doi.org/10.1111/j.1365-2052.1995.tb02612.x
  11. Jakse, J., Satovic, Z. and Javomik, B. 2004. Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome 47:889-899 https://doi.org/10.1139/g04-054
  12. Kappes, SM., Keele, J. W., Stone, R. T., McGraw, R. A., Sonstegard, T. S., Smith, T. P., Lopez-Corrales, N. L. and Beattie, C. W. 1997. A second-generation linkage map of the bovine genome. Genome Res. 7:235-249 https://doi.org/10.1101/gr.7.3.235
  13. MacHugh, D. E., Loftus, R. T., Cunningham, P. and Bradley, D. G. 1998. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. Anim. Genet. 29:333-340 https://doi.org/10.1046/j.1365-2052.1998.295330.x
  14. Marshall, T. C., Slate, J., Kruuk, L. E. B. and Pemberton, J. M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639-655 https://doi.org/10.1046/j.1365-294x.1998.00374.x
  15. Martin-Burnel, I., Garcia-Muro, E. and Zaragoza, P. 1999. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30:177-182 https://doi.org/10.1046/j.1365-2052.1999.00437.x
  16. Maudet, C., Luikart, G. and Taberlet, P. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci. 80:942-950
  17. Metta, M., Kanginakudru, S., Gudiseva, N. and Nagaraju, J. 2004. Genetic characterization of the Indian cattle breeds, Ongole and Deoni (Bos indicus), using microsatellite markers - a preliminary study. BMC. Genet. 5:16
  18. Nei, M. 1972. Genetic distance between populations. Am. Nat. 106:283-292 https://doi.org/10.1086/282771
  19. Peelman, L. J., Mortiaux, F., Van, Zeveren, A., Dansercoer, A., Mommens, G., Coopman, F., Bouquet, Y., Bumy, A., Renaville, R. and Portetelle, D. 1998. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim. Genet. 29:161-167 https://doi.org/10.1111/j.1365-2052.1998.00280.x
  20. Raymond, M. and Rousset. F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86:248-249 https://doi.org/10.1093/oxfordjournals.jhered.a111573
  21. Saitou, N. and Nei, M. 1997. The neighborjoining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
  22. Schnabel, R. D., Ward, T. J. and Derr, J. N. 2000. Validation of 15 microsatellites for parentage testing in North American bison, Bison bison and domestic cattle. Anim. Genet. 31:360-366 https://doi.org/10.1046/j.1365-2052.2000.00685.x
  23. Weir, B. S. and Hill. W. G. 2002. Estimating F-statistics. Annu. Rev. Genet. 36:721-50 https://doi.org/10.1146/annurev.genet.36.050802.093940
  24. Yoon, D. H., Kong, H. S., Oh. J. D.. Lee, J. H., Cho, B. W., Kim, J. D., Jeon, K. J.. Jo, C. Y., Jeon, G. J. and Lee. H. K. 2005. Establishment of an Individual Identification System Based on Microsatellite Polymorphisms in Korean Cattle (Hanwoo). Asian-Aust. J. Anim. Sci. 18: 762-766 https://doi.org/10.5713/ajas.2005.762

Cited by

  1. The Genetic Relationship between Regional Population of Hanwoo Brands (Korean Cattle) Using Microsatellite Markers vol.27, pp.3, 2007, https://doi.org/10.5851/kosfa.2007.27.3.357
  2. Verification of ET and AI Derived Offspring Using on the Genetic Polymorphisms of Microsatellite and Coat Color Related Genes in Jeju Black Cattle vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.381
  3. Polymorphisms and Allele Distribution of Novel Indel Markers in Jeju Black Cattle, Hanwoo and Imported Cattle Breeds vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1644
  4. Genetic Traceability of Black Pig Meats Using Microsatellite Markers vol.27, pp.7, 2014, https://doi.org/10.5713/ajas.2013.13829
  5. Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea vol.34, pp.6, 2014, https://doi.org/10.5851/kosfa.2014.34.6.763
  6. Establishment of a Microsatellite Marker set for Individual Identification in Goat vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.157