DOI QR코드

DOI QR Code

Fabrication of SiCN microstructures for super-high temperature MEMS using PDMS mold and its characteristics

PDMS 몰드를 이용한 초고온 MEMS용 SiCN 미세구조물 제작과 그 특성

  • 정귀상 (울산대학교 전기전자정보시스템공학부) ;
  • 우형순 (울산대학교 전기전자정보시스템공학부)
  • Published : 2006.01.31

Abstract

This paper describes a novel processing technique for fabrication of polymer-derived SiCN (silicone carbonitride) microstructures for super-temperature MEMS applications. PDMS (polydimethylsiloxane) mold is fabricated on SU-8 photoresist using standard UV photolithographic process. Liquid precursor is injected into the PDMS mold. Finally, solid polymer structure is cross-linked using HIP (hot isostatic pressure) at $400^{\circ}C$, 205 bar. Optimum pyrolysis and annealing conditions are determined to form a ceramic microstructure capable of withstanding over $1400^{\circ}C$. The fabricated SiCN ceramic microstructure has excellent characteristics, such as shear strength (15.2 N), insulation resistance ($2.163{\times}10^{14}{\Omega}$) and BDV (min. 1.2 kV) under optimum process condition. These fabricated SiCN ceramic microstructures have greater electric and physical characteristics than bulk Si wafer. The fabricated SiCN microstructures would be applied for supertemperature MEMS applications such as heat exchanger and combustion chamber.

Keywords

References

  1. M. Mehregany, C. A. Zonnan, N. Rajan, and C. H. Wu, 'Silicon carbide MEMS for harsh environments', Proceeding IEEE, vol. 86, no. 8, pp. 1594-1609, 1998 https://doi.org/10.1109/5.704265
  2. G S. Chung, 'Thin SOI structures for sensing and integrated circuit applications', Sensors and Actuators A, vol. 39, pp. 241-251, 1993 https://doi.org/10.1016/0924-4247(93)80226-7
  3. G. S. Chung and R. Maboudian, 'Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications', Sensors and Actuators A, vol. 119, pp. 599-604, 2005 https://doi.org/10.1016/j.sna.2004.10.004
  4. L. A. Liew, W. Zhang, V. M. Bright, L. An, M. L. Dunn, and R. Raj, 'Fabrication of SiCN ceramic MEMS using inectable polymer-precursor technique,' Sensors and Actuators A, vol. 89, pp. 64-70, 2001 https://doi.org/10.1016/S0924-4247(00)00545-8
  5. L. A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V. M. Bright, M. L. Dunn, J. W. Daily, and R. Raj, 'Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer', Sensors and Actuators A, vol. 95, pp. 120-134, 2002 https://doi.org/10.1016/S0924-4247(01)00723-3
  6. L. A. Liew, R. A. Saravanan, M. right, M. L. Dunn, J. W. Daily, and R. Raj, 'Processing and characterization of silicon carbon-nitride ceramics: application of electrical properties towards MEMS thermal actuators', Sensors and Actuators A, vol. 103, pp. 171-181, 2003
  7. E. Kroke, Y. L. Li, C. Konetschny, E. Lecomte, C. Fasel, and R. Riedel, 'Sliazane derived ceramics and related materials', Mater. Sic. and Eng., vol. 26, pp. 97-199, 2000 https://doi.org/10.1016/S0927-796X(00)00008-5
  8. R. Raj, L. An, S. Shah, and R. Riedel, 'Oxidation kinetics of amorphous silicon carbonitride ceramics', Journal American Ceramic Society, vol. 84, pp. 1803-1810, 2001 https://doi.org/10.1111/j.1151-2916.2001.tb00918.x
  9. R. Riedel, L. M. Ruwisch, L. An, and R. Raj, 'Amorphous siliconboron carbonitride ceramics with anomalously high resistance to creep', Journal American Ceramic Society, vol. 81, pp. 3341-3344, 1998 https://doi.org/10.1111/j.1151-2916.1998.tb02780.x