DOI QR코드

DOI QR Code

The Relation between Net Rate of Endogenous Noncarbonic Acid Production from Diet Potassium and Protein Intakes and Bone Mineral Density in Korean Women

일부 한국 여성에 있어 칼륨과 단백질의 섭취량에 의한 NEAP(net rate of endogenous noncarbonic acid production)와 골밀도와의 관련성

  • Bae, Yun-Jung (Dept. of Food and Nutrition, Sookmyung Women's University) ;
  • Choi, Mi-Kyeong (Dept. of Human Nutrition & Food Science, Chungwoon University) ;
  • Kim, Mi-Hyun (Dept. of Food and Nutrition, Kangwon National University) ;
  • Kim, Eun-Young (Dept. of Food and Nutrition, Sookmyung Women's University) ;
  • Lee, Joo-Yeon (Dept. of Food and Nutrition, Sookmyung Women's University) ;
  • Sung, Chung-Ja (Dept. of Food and Nutrition, Sookmyung Women's University)
  • 배윤정 (숙명여자대학교 식품영양학과) ;
  • 최미경 (청운대학교 식품영양학과) ;
  • 김미현 (강원대학교 식품영양학과) ;
  • 김은영 (숙명여자대학교 식품영양학과) ;
  • 이주연 (숙명여자대학교 식품영양학과) ;
  • 승정자 (숙명여자대학교 식품영양학과)
  • Published : 2006.09.01

Abstract

The purpose of this study was to investigate the relation between NEAP (net rate of endogenous noncarbonic acid production) from dietary potassium and protein intakes, and bone mineral density and urinary deoxypyridinoline (DPD) in Korean women. The subjects were 276 women aged $18\sim81$, and they were asked about general characteristics and nutrient intake using 24-hr recall method. Also, their bone mineral density of spine and femoral neck were measured using DEXA. Urinary DPD analysis was done in 106 postmenopausal women. The average energy, protein and potassium intake were 1503.0 kcal, 57.7 g and 60.8 mEq, respectively. Mean NEAP [54.5$\times${protein intake (g)/potassium intake (mEq)}-10.2] was 44.6. NEAP showed a significantly negative correlation with spine bone mineral density of the subjects after controlling for confounding factors (age, height and weight) (p<0.05). The lowest quartile of protein intake had the highest spine bone mineral density after controlling for confounding factors (p<0.05). There was no significant correlation between urinary DPD and calculated NEAP. These results provided positive relation between a ratio of lower protein to higher potassium dietary intake and bone mineral density.

단백질과 칼륨의 섭취량으로 산출한 NEAP와 여성의 골밀도 및 골대사지표와의 관련성을 알아보기 위하여 $18\sim81$세의 여성 276명을 대상으로 설문조사와 식사섭취조사, 요추와 대퇴경부의 골밀도 측정, 소변의 디옥시피리디놀린을 분석한 결과는 다음과 같다. 대상자들의 NEAP 수준은 요추 골밀도(p<0.05)와 유의적인 음의 상관성을 보였고 대퇴경부 골밀도와도 유의적인 수준은 아니었으나 음의 상관성을 보였다. NEAP의 수준에 따라 대상자를 4분위수로 분류하고 연령, 신장, 체중의 차이를 보정하여 골밀도를 비교하였을 때 NEAP 수준이 가장 낮은 군의 요추 및 대퇴경부 골밀도가 가장 높았으나 유의적인 차이를 보이지는 않았다. 또한 단백질의 섭취량에 따른 골밀도의 4분위수 분석결과 단백질의 섭취량이 증가함에 따라 요추 골밀도가 감소하였다(p<0.05). 이상의 연구결과를 통하여 체내에서 알칼리를 생성하는 칼륨의 섭취증가와 체내에서 산을 생성하는 단백질의 섭취감소를 통한 체내 산도의 감소가 여성의 골밀도와 긍정적인 관련성을 나타낼 수 있음이 제시되었다. 따라서 칼슘섭취의 부족문제가 좀처럼 해결되고 있지 않은 우리나라의 식생활에서 골용해와 칼슘의 배설을 줄임으로써 골격건강을 유지할 수 있는 방안으로 단백질의 과잉섭취를 제한하고 체내 알칼리를 형성할 수 있는 무기질이 풍부한 식품의 섭취를 늘일 수 있도록 하는 식사지침의 마련이 필요하다고 생각된다. 또한 본 연구에서는 골밀도에 긍정적인 영향을 미치는 체내 알칼리성 유도 영양소를 칼륨으로만 한정했지만, 마그네슘이나 칼슘 등도 체내 알칼리성에 영향을 미치는 요인이기 때문에 다양한 알칼리성 영양소의 섭취가 골밀도에 미치는 영향에 대한 추후 연구가 요구된다.

Keywords

References

  1. Ilich JZ, Kerstetter JE. 2000. Nutrition in bone health revisited: a story beyond calcium. J Am Coll Nutr 19: 715- 737 https://doi.org/10.1080/07315724.2000.10718070
  2. Mazess RB, Mather W. 1974. Bone mineral content of North Alaskan Eskimos. Am J Clin Nutr 27: 916-925 https://doi.org/10.1093/ajcn/27.8.916
  3. Mazess RB, Mather WE. 1975. Bone mineral content in Canadian Eskimos. Hum Biol 47: 44-63
  4. Feskanich D, Willett WC, Stampfer MJ, Colditz GA. 1996. Protein consumption and bone fractures in women. Am J Epidemiol 143: 472-479 https://doi.org/10.1093/oxfordjournals.aje.a008767
  5. Hu JF, Zhao XH, Parpia B, Campbell TC. 1993. Dietary intakes and urinary excretion of calcium and acids: a cross- sectional study of women in China. Am J Clin Nutr 58: 398-406 https://doi.org/10.1093/ajcn/58.3.398
  6. Abelow BJ, Holford TR, Insogna KL. 1992. Cross-cultural association between dietary animal protein and hip fracture: a hypothesis. Calcif Tissue Int 50: 14-18 https://doi.org/10.1007/BF00297291
  7. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC. 1994. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330: 1776-1781 https://doi.org/10.1056/NEJM199406233302502
  8. Kerstetter JE, O'Brien KO, Insogna KL. 1998. Dietary protein affects intestinal calcium absorption. Am J Clin Nutr 68: 859-865 https://doi.org/10.1093/ajcn/68.4.859
  9. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP. 1999. Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69: 727- 736 https://doi.org/10.1093/ajcn/69.4.727
  10. Alexy U, Remer T, Manz F, Neu CM, Schoenau E. 2005. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr 82: 1107-1114 https://doi.org/10.1093/ajcn/82.5.1107
  11. Macdonald HM, New SA, Fraser WD, Campbell MK, Reid DM. 2005. Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. Am J Clin Nutr 81: 923-933 https://doi.org/10.1093/ajcn/81.4.923
  12. Min YK. 1998. Clinical usefulness of biochemical makers for the side of new medicine. '98 New Horizon of Osteoporosis (Osteoporosis Symposium). p 15-21
  13. New SA, MacDonald HM, Campbell MK, Martin JC, Garton MJ, Robbins SP. 2004. Lower estimates of net endogenous noncarbonic acid production are positively associated with indexes of bone health in premenopausal and perimenopausal women. Am J Clin Nutr 79: 131-138 https://doi.org/10.1093/ajcn/79.1.131
  14. Ministry of Health an Welfare. 2002. 2001 national health and nutrition survey-overview, health examination, nutrition Survey I, II
  15. Frassetto L, Todd K, Morris RC Jr, Sebastian A. 1998. Estimation of net endogenous noncarbonic acid production in humans from dietary protein and potassium contents. Am J Clin Nutr 68: 576-583 https://doi.org/10.1093/ajcn/68.3.576
  16. Kim KS. 1996. A plan of selection and application to biochemical makers. The third Osteoporosis Symposium, Korea. p 41-45
  17. Oh SI, Lee HS, Lee MS, Kim CI, Kwon IS, Park SC. 2002. Some factors affecting bone mineral status of postmenopausal women. Korean J Community Nutrition 7: 121-129
  18. The Korean nutrition society. 2005. Dietary reference intakes for Koreans. Seoul
  19. Buclin T, Cosma M, Appenzeller M, Jacquet AF, Decosterd LA, Biollaz J, Burchhardt P. 2001. Diet acids and alkalis influence calcium retention in bone. Osteoporosis Int 12: 493-499 https://doi.org/10.1007/s001980170095
  20. Lawrence GR, Smith JA. 1989. Pathogenesis, prevention and treatment of osteoporosis. Ann Rev Med 40: 251-267 https://doi.org/10.1146/annurev.me.40.020189.001343
  21. Bonjour JP, Rapin CH, Rizzoli R, Tkatch L, Delmi M, Chevalley T, Nydegger V, Slosman D, Vasey H. 1992. Hip fracture, femoral bone mineral density, and protein supply in elderly patients. In Nutrition of the elderly. Munro H, Schliert G, eds. Nestle Nutrition Workshop Series 29: 151
  22. Munger RG, Cerhan JR, Chiu BCH. 1999. Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. Am J Clin Nutr 69: 147-152 https://doi.org/10.1093/ajcn/69.1.147
  23. New S, Robbins S, Reid D. 1998. Fruit and vegetable consumption and bone health: is there a link? In Nutritional aspects of osteoporosis 97. Burckhardt P, Dawson-Hughes B, RP Heaney, eds. Ares-Serono Symposia Publications, Rome. p 199-207
  24. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM. 2000. Dietary influences on bone mass and bone consumption and bone health? Am J Clin Nutr 71: 142-151 https://doi.org/10.1093/ajcn/71.1.142
  25. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N. 1997. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 336: 1117-1124 https://doi.org/10.1056/NEJM199704173361601
  26. Sebstian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. 1994. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 330: 1776-1781 https://doi.org/10.1056/NEJM199406233302502
  27. Sellmeyer DE, Schloetter M, Sebastian A. 2002. Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 87: 2008-2012 https://doi.org/10.1210/jc.87.5.2008
  28. Sakhaee K, Maalouf NM, Abrams SA, Pak CY. 2005. Effects of potassium alkali and calcium supplementation on bone turnover in postmenopausal women. J Clin Endocrinol Metab 90: 3528-3533 https://doi.org/10.1210/jc.2004-2451
  29. Frassetto L, Morris RC Jr, Sebastian A. 2005. Long-term persistence of the urine calcium-lowering effect of potassium bicarbonate in postmenopausal women. J Clin Endocrinol Metab 90: 831-834 https://doi.org/10.1210/jc.2004-1350
  30. Remer T. 2004. Estimates of renal net acid excretion and bone health. Am J Clin Nutr 80: 786-797

Cited by

  1. The Effects of Korean DASH Diet Education with Calcium/Vitamin D Supplements on Nutrient Intakes, Food Consumption, Bone Turnover Markers and Bone Mineral Density among Korean Elderly Women vol.27, pp.1, 2015, https://doi.org/10.7475/kjan.2015.27.1.94
  2. Estimation of Boron Intake and its Relation with Bone Mineral Density in Free-Living Korean Female Subjects vol.125, pp.3, 2008, https://doi.org/10.1007/s12011-008-8176-x