Optical characteristic of 1.5{\mu}m$ InGaAs/InGaAsP/InP QD Superluminescent Diode

$1.5{\mu}m$ InGaAs/InGaAsP/InP 양자점 Superluminescent Diode의 광 특성

  • Yoo, Young-Chae (Nano Device Research Center, Korea Institute of Science and Technology, Department of Electronic and Electrical Engineering, SungKyunKwan University) ;
  • Lee, Jung-Il (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Kim, Kyoung-Chan (Nano Device Research Center, Korea Institute of Science and Technology) ;
  • Kim, Eun-Kyu (Department of Physics, Hanyang University) ;
  • Kim, Gil-Ho (Department of Electronic and Electrical Engineering, SungKyunKwan University) ;
  • Han, Il-Ki (Nano Device Research Center, Korea Institute of Science and Technology)
  • 유영채 (한국과학기술연구원 나노소자연구센터, 성균관대학교 전자전기공학과) ;
  • 이정일 (한국과학기술연구원 나노소자연구센터) ;
  • 김경찬 (한국과학기술연구원 나노소자연구센터) ;
  • 김은규 (한양대학교 물리학과) ;
  • 김길호 (성균관대학교 전자전기공학과) ;
  • 한일기 (한국과학기술연구원 나노소자연구센터)
  • Published : 2006.09.01

Abstract

Superluminescent diodes (SLD) with the emitting wavelength of $1.55{\mu}m$ was fabricated on InGaAs quantum dot structure grown by MOCVD. The output power and 3-dB bandwidth at room temperature and continuous wave operation were 3 mw and 55 nm, respectively.

MOCVD로 성장된 InGaAs 양자점을 이용하여 $1.5{\mu}m$의 발광파장을 갖는 고휘도 발광소자 (Superluminescent diode, SLD)를 제작하였다. 상온에서 SLD의 광출력은 CW 3 mW 였고, 3-dB 파장대역폭은 55 nm 이었다.

Keywords

References

  1. J. H. Song, S. H. Cho, I. K. Han, Y. Hu, P. J. S. Heim, F. G. Johnson, D. R. Stone, and M. Dagenais, IEEE Photon. Technol. Lett, 12, 783 (2000) https://doi.org/10.1109/68.853499
  2. T. Yamatoya, S. Sekiguchi, F. Koyama, and K, Iga, Japan J. Appl. Phys, 40, 678 (2001) https://doi.org/10.1143/JJAP.40.L678
  3. Z. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, Opt. Quantum Electron, 31, 1235 (1999) https://doi.org/10.1023/A:1007030119338
  4. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, IEEE Photon. Technol. Lett, 16, 27 (2004) https://doi.org/10.1109/LPT.2003.820481
  5. L. H. Li, M. Rossetti, and A. Fiore, J. Cryst. Growth, 278, 680 (2005) https://doi.org/10.1016/j.jcrysgro.2004.12.109
  6. J. W. Jang, S. H. Pyun, S. H. Lee, I. C. Lee, Weon G. Jeong, R. Stevenson, P. Daniel Dapkus, N. J. Kim, M. S. Hwang, and D. Lee, Appl. Phys. Lett, 85, 3675 (2004) https://doi.org/10.1063/1.1812365
  7. S. H. Pyun, S. H. Lee, I. C. Lee, H. D. Kim, Weon G. Jeong, J. W. Jang, N. J. Kim, M. S. Hwang, D. Lee, J. H. Lee, and D. K. Oh, J. Appl. Phys. 96, 5766 (2004) https://doi.org/10.1063/1.1803941
  8. C. F. Lin, and C. S. Juang, IEEE Photon. Technol. Lett, 8, 206 (1996) https://doi.org/10.1109/68.484242
  9. D. Marcuse, J. Lightwave. Technol, 7, 336 (1989) https://doi.org/10.1109/50.17776
  10. F. Lelarge, B. Rousseau, B. Dagens, F. Poingt, F. Pommereau, and A. Accard, IEEE Photon. Technol. Lett, 17, 1369 (1996) https://doi.org/10.1109/LPT.2005.848279
  11. A. R. Adams, M. Asda, Y. Suematsu, and S. Arai, Japan J. Appl. Phys. 19, 621 (1980) https://doi.org/10.1143/JJAP.19.L621
  12. T. Yamatoya, S. Mori, F. Koyama, and K, Iga, Japan J. Appl. Phys. 38, 5121 (1999) https://doi.org/10.1143/JJAP.38.5121