DOI QR코드

DOI QR Code

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Lee, Jai H. (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Published : 2006.11.20

Abstract

A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.

Keywords

References

  1. von Gunten, U. Wat. Res. 2003, 37, 1443-1467 https://doi.org/10.1016/S0043-1354(02)00457-8
  2. Buhler, R. E.; Staehelin, J.; Hoigne, J. J. Phys. Chem. 1984, 88, 2560-2564 https://doi.org/10.1021/j150656a026
  3. Hoigne, J.; Bader, H. Wat. Res. 1976, 10, 377-386 https://doi.org/10.1016/0043-1354(76)90055-5
  4. Hoigne, J.; Bader, H.; Haag, W. R.; Staehelin, J. Wat. Res. 1985, 19, 993-1004 https://doi.org/10.1016/0043-1354(85)90368-9
  5. Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17
  6. Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1982, 16, 676-681 https://doi.org/10.1021/es00104a009
  7. Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1985, 19, 1206- 1213 https://doi.org/10.1021/es00142a012
  8. Flyunt, R.; Leitzke, A.; Mark, G.; Mvula, E.; Reisz, E.; Schick, R.; von Sonntag, C. J. Phys. Chem B 2003, 107, 7242-7253 https://doi.org/10.1021/jp022455b
  9. Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. J. Phys. Chem. Ref. Data 1985, 14
  10. Forni, L.; Bahnemann, D.; Hart, E. J. J. Phys. Chem. 1982, 86, 255-259 https://doi.org/10.1021/j100391a025
  11. Sehested, K.; Holcman, J.; Hart, E. J. J. Phys. Chem. 1983, 87, 1951-1954 https://doi.org/10.1021/j100234a024
  12. Kwon, B. G.; Lee, J. H. Anal. Chem. 2004, 76, 6359-6364 https://doi.org/10.1021/ac0493828
  13. Bader, H.; Hoigne, J. Wat. Res. 1981, 9, 449-456
  14. Bull, C.; McClune, G. J.; Fee, J. A. J. Am. Chem. Soc. 1983, 105, 5290-5300 https://doi.org/10.1021/ja00354a019
  15. Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17
  16. Sadat-Shafai, T.; Pucheault, J.; Ferradini, C. Radiat. Phys. Chem. 1981, 17, 283-288 https://doi.org/10.1016/0146-5724(81)90096-0
  17. Hayon, E.; Treinin, A.; Will, J. J. Phys. Chem. 1972, 94, 47-57 https://doi.org/10.1021/j100364a008
  18. Fischer, M.; Warneck, P. J. Phys. Chem. 1996, 100, 15111-15117 https://doi.org/10.1021/jp953236b
  19. Das, T. N.; Huie, R. E.; Neta, P. J. Phys. Chem. A 1999, 103, 3581-3588 https://doi.org/10.1021/jp9900234
  20. Yermakov, A. N.; Zhitomirsky, B. M.; Poskrebyshev, G. A.; Stoliarov, S. I. J. Phys. Chem. 1995, 99, 3120-3127 https://doi.org/10.1021/j100010a023
  21. Sehested, K.; Holcman, J.; Bjergbakke, E.; Hart, E. J. J. Phys. Chem. 1984, 88, 4144-4147 https://doi.org/10.1021/j150662a058

Cited by

  1. High-frequency underwater plasma discharge application in antibacterial activity vol.43, pp.3, 2017, https://doi.org/10.1134/S1063780X17030011
  2. Acridinium Betaine as a Single-Electron-Transfer Catalyst: Design and Application to Dimerization of Oxindoles vol.7, pp.4, 2017, https://doi.org/10.1021/acscatal.7b00265
  3. On the mechanism of air nitrogen fixation on activated carbon surface in water vol.78, pp.4, 2008, https://doi.org/10.1134/S1070363208040087
  4. 31P NMR Investigations on Roundup Degradation by AOP Procedures vol.11, pp.2, 2019, https://doi.org/10.3390/w11020331
  5. Characterization of the hydroperoxyl/superoxide anion radical (HO2/O2) formed from the photolysis of immobilized TiO2 in a continuous flow vol.199, pp.1, 2006, https://doi.org/10.1016/j.jphotochem.2008.05.001
  6. Catalytic and Mechanistic Insights of the Low‐Temperature Selective Oxidation of Methane over Cu‐Promoted Fe‐ZSM‐5 vol.18, pp.49, 2006, https://doi.org/10.1002/chem.201202802
  7. Reactivity of aminophosphonic acids. 3. Reaction with hydrogen peroxide vol.194, pp.4, 2006, https://doi.org/10.1080/10426507.2018.1539850