DOI QR코드

DOI QR Code

Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]

  • Published : 2006.11.20

Abstract

The L-Valinate anion coordinating zinc complex, [$Zn(val)_2(H-2O)$], was isolated and structurally characterized by single crystal X-ray crystallography. The crystal possess orthorhombic symmetry with a space group $P2_12_12_1$, Z = 4, and a = 7.4279(2)$\AA$, b = 9.4342(2)$\AA$, c =20.5862(7)$\AA$ respectively. The compound features a penta-coordinate zinc ion in which the two valine anion molecules are directly coordinating the central zinc metal ion via their N (amine) and O (carboxylate) atoms, and an additional coordination to zinc is made by water molecule (solvent) to form a distorted square pyramidal structure. In addition, further synthesis of the valine capped ZnS:Mn nanocrystal from the reaction of [$Zn(val)_2(H-2O)$] precursor with $Na_2S$ and 1.95 weight % of $Mn^{2+}$ dopant is described. Obtained valine capped nanocrystal was water dispersible and was optically characterized by UV-vis and solution PL spectroscopy. The solution PL spectrum for the valine capped ZnS:Mn nanocrystal showed an excitation peak at 280 nm and a very narrow emission peak at 558 nm respectively. The measured and calculated PL efficiency of the nanocrystal in water was 15.8%. The obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The particle size of the nanocrystal was also measured via a TEM image. The measured average particle size was 3.3 nm.

Keywords

References

  1. Bol, A. A.; Meuijernk, A. Phys. Rev. B 1998, 24, 58
  2. Bruchez, M.; Morrone, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013 https://doi.org/10.1126/science.281.5385.2013
  3. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226 https://doi.org/10.1021/jp9535506
  4. Brus, L. E. Appl. Phys. A 1991, 53, 465 https://doi.org/10.1007/BF00331535
  5. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58 https://doi.org/10.1002/adma.200390011
  6. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47 https://doi.org/10.1038/nbt767
  7. Heath, J. R. Acc. Chem. Res. 1999, 32
  8. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31 https://doi.org/10.1016/j.cap.2003.11.075
  9. Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142 https://doi.org/10.1021/ja002535y
  10. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  11. Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  12. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853 https://doi.org/10.1039/b303287f
  13. Hwang, C.-S.; Cho, I. H. Bull. Kor. Chem. Soc. 2005, 26(11), 1776 https://doi.org/10.5012/bkcs.2005.26.11.1776
  14. Mirkin, C. A.; Letsinger, L. C.; Mucic, R. C.; Storhof, J. J. Nature 1996, 382, 607 https://doi.org/10.1038/382607a0
  15. Kuobo, T.; Isobe, M.; Senna, M. J. Lumin. 2002, 99, 39 https://doi.org/10.1016/S0022-2313(02)00296-X
  16. Barrelet, C.; Wu, Y.; Bell, D. C.; Lieber, M. J. Am. Chem. Soc. 2003, 125, 11498 https://doi.org/10.1021/ja036990g
  17. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229 https://doi.org/10.1021/j100820a009
  18. SAINT: SAX Area-Detector Integration Program, version 4.050; Siemens Analytical Instrumentation, Inc.: Madison, WI, 1995
  19. SADABS: Area-Detector Absorption Correction; Siemens Industrial Automation, Inc.: Madison, WI, 1996
  20. Siemens SHELXTL, Structure Determination Software Programs; Siemens Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1997
  21. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928 https://doi.org/10.1039/b108394e
  22. Chen, M. D.; Liou, S. J.; Lin, P. Y.; Yang, V. C.; Alexander, P. S.; Lin, W. H. Biol. Trace. Elm. Res. 1998, 61, 303 https://doi.org/10.1007/BF02789090
  23. Coulston, L.; Dandona, P. Diabetes 1980, 29, 665 https://doi.org/10.2337/diabetes.29.8.665
  24. Seale, A. P.; de Jesus, L. A.; Kim, S. Y.; Choi, Y. H.; Lim, H. B.; Hwang, C.-S; Kim, Y. S. Biothech. Lett. 2005, 27, 221 https://doi.org/10.1007/s10529-004-7855-8
  25. Strasdeit, H.; Busching, I.; Behrends, S.; Saak, W.; Berklage, W. Chem. Eur. J. 2001, 7(5), 1133 https://doi.org/10.1002/1521-3765(20010302)7:5<1133::AID-CHEM1133>3.0.CO;2-T
  26. Garzon, R. L.; Godino-Salido, M. L.; Arranz-Mascaros, P.; Fontecha-Camara, M. A.; Gutierrez-Valero, M. D.; Cuesta, R.; Moreno, J. M.; Stoekli-Evans, H. Inorg. Chim. Acta 2004, 357, 2007 https://doi.org/10.1016/j.ica.2003.12.039
  27. Moszczenski, C. W.; Hooper, R. J. Inorg. Chim. Acta 1983, 70, 71 https://doi.org/10.1016/S0020-1693(00)82780-2
  28. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed.; Wiley: 1997; p 59
  29. Pandiarajan, S.; Umadevi, M.; Rajaran, R. K.; Ramakrishinan, V. Spectrochim. Acta A 2005, 62, 630 https://doi.org/10.1016/j.saa.2005.02.008
  30. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  31. Reiss, P.; Quemard, G.; Carayon, S.; Bleuse, J.; Chandezon, F.; Pron, A. Mater. Chem. Phys. 2004, 84, 10 https://doi.org/10.1016/j.matchemphys.2003.11.002
  32. Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861
  33. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845 https://doi.org/10.1021/la990165p
  34. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122 https://doi.org/10.1021/ja991662v
  35. Kho, R.; Nguyen, L.; Torres-Martinez, C. L.; Mehra, R. K. Biochem. Biophys. Res. Commun. 2000, 272, 29 https://doi.org/10.1006/bbrc.2000.2712
  36. Bae, W.; Mehra, R. K. J. Inorg. Biochem. 1998, 70, 125 https://doi.org/10.1016/S0162-0134(98)10008-9
  37. Bhargava, R. N.; Gallagher, D. Phys. Rev. Lett. 1994, 72, 416 https://doi.org/10.1103/PhysRevLett.72.416
  38. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39 https://doi.org/10.1016/S0927-7757(96)03968-4

Cited by

  1. Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1741
  2. bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
  3. Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1181
  4. Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1169
  5. Biomolecules in Metal and Semiconductor Nanoparticle Growth vol.56, pp.4, 2015, https://doi.org/10.1002/ijch.201500031
  6. Thermo-Optical Properties of Amino Acid Modified ZnO-PVA Colloidal Suspension Under CW Laser Illumination vol.362, pp.1, 2016, https://doi.org/10.1002/masy.201500010
  7. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution vol.6, pp.5, 2016, https://doi.org/10.3390/nano6050082
  8. Application of the Manganese (II) Ion Doped Zinc Sulfide Nanocrystals for Dual Detection of Cyanide and Nitrite Ions in Aqueous Solution vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11204
  9. Photosensor Activities of Cysteamine-Capped ZnS:Mn Nanocrystals in the Direct Detection of Nitrite Ions by Fluorescence Quenching in Aqueous Solutions vol.72, pp.3, 2018, https://doi.org/10.3938/jkps.72.424
  10. Syntheses and Optical Properties of the Water-Dispersible ZnS:Mn Nanocrystals Surface Capped by L-Aminoacid Ligands: Arginine, Cysteine, Histidine, and Methionine vol.28, pp.7, 2006, https://doi.org/10.5012/bkcs.2007.28.7.1091
  11. Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.467
  12. Valine 및 Alanine 분자로 표면 처리된 수용성의 ZnS 나노입자의 합성 및 특성연구 vol.53, pp.5, 2006, https://doi.org/10.5012/jkcs.2009.53.5.505
  13. Vibrational spectra of Zn(II) complexes of the amino acids with hydrophobic residues vol.72, pp.5, 2006, https://doi.org/10.1016/j.saa.2008.12.017
  14. Syntheses and Optical Characterizations of ZnS:Mn Nanocrystals Capped by Polyethylene Oxide Molecules of Varying Molecular Weights vol.31, pp.12, 2006, https://doi.org/10.5012/bkcs.2010.31.12.3834
  15. EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1997
  16. Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2006, https://doi.org/10.5012/bkcs.2011.32.1.53
  17. White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn vol.35, pp.1, 2006, https://doi.org/10.5012/bkcs.2014.35.1.189
  18. Highly luminescent ZnS:Mn quantum dots capped with aloe vera extract vol.323, pp.None, 2006, https://doi.org/10.1016/j.ssc.2020.114106