DOI QR코드

DOI QR Code

Aggregation-Induced Emission Enhancement of Polysilole Nanoaggregates

  • Published : 2006.12.20

Abstract

Keywords

References

  1. West, R.; Sohn, H.; Bankwitz, U.; Calabrese, J.; Apeloig, Y.; Mueller, T. J. Am. Chem. Soc. 1995, 117, 11608-11609 https://doi.org/10.1021/ja00151a038
  2. Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. J. Am. Chem. Soc. 1996, 118, 11974-11975 https://doi.org/10.1021/ja962829c
  3. Sohn, H.; Huddleston, R. R.; Powell, D. R.; West, R.; Oka, K.; Yonghua, X. J. Am. Chem. Soc. 1999, 121, 2935-2936 https://doi.org/10.1021/ja983350i
  4. Xu, Y.; Fujino, T.; Naito, H.; Dohmaru, T.; Oka, K.; Sohn, H.; West, R. Jpn. J. Appl. Phys. 1999, 38, 6915-6918 https://doi.org/10.1143/JJAP.38.6915
  5. Yamaguchi, S.; Jin, R. Z.; Tamao, K. J. Am. Chem. Soc. 1999, 121, 2937-2938 https://doi.org/10.1021/ja983349j
  6. Sohn, H.; Calhoun, R. M.; Sailor, M. J.; Trogler, W. C. Angew. Chem. Int. Ed. 2001, 11, 2104-2105
  7. Sohn, H.; Sailor, M. J.; Magde, D.; Trogler, W. C. J. Am. Chem. Soc. 2003, 125, 3821-3830 https://doi.org/10.1021/ja021214e
  8. Jakubiak, R.; Bao, Z.; Rothberg, L. Synth. Met. 2000, 114, 61-64 https://doi.org/10.1016/S0379-6779(00)00225-3
  9. Deans, R.; Kim, J.; Machacek, M. R.; Swager, T. M. J. Am. Chem. Soc. 2000, 122, 8565-8566 https://doi.org/10.1021/ja0007298
  10. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, S. Z. Chem. Commun. 2001, 115, 1740-1741
  11. Palilis, L. C.; Maekinen, A. J.; Uchida, M.; Kafafi, Z. H. Appl. Phys. Lett. 2003, 14, 2209-2210
  12. An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y. J. Am. Chem. Soc. 2002, 124, 14410-14415 https://doi.org/10.1021/ja0269082
  13. Lee, M. H.; Kim, D.; Dong, Y.; Tang, B. Z. J. Korean Phys. Soc. 2004, 45, 329-332

Cited by

  1. Tolyl-Substituted Siloles: Synthesis, Substituent Effects, and Aggregation-Induced Emission vol.21, pp.2, 2011, https://doi.org/10.1007/s10904-011-9464-z
  2. Syntheses, optical properties, and bioapplications of the aggregation-induced emission of 2,3,4,5-tetraphenylcyclopenta-2,4-dienyl benzene derivatives vol.22, pp.36, 2012, https://doi.org/10.1039/c2jm32755d
  3. Standoff Raman Spectroscopic Detection of Explosive Molecules vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1668
  4. High solid-state fluorescence in ring-shaped AEE-active tetraphenylsilole derivatives vol.50, pp.84, 2014, https://doi.org/10.1039/C4CC06203E
  5. Hexaphenylbenzene-Based Fluorescent Aggregates for Ratiometric Detection of Cyanide Ions at Nanomolar Level: Set–Reset Memorized Sequential Logic Device vol.6, pp.8, 2014, https://doi.org/10.1021/am500903d
  6. Synthesis and High Solid-State Fluorescence of Cyclic Silole Derivatives vol.34, pp.1, 2015, https://doi.org/10.1021/om500884b
  7. vol.52, pp.11, 2016, https://doi.org/10.1039/C5CC09702A
  8. Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate vol.72, pp.2, 2018, https://doi.org/10.3938/jkps.72.234
  9. Optical Characterization of Germole Nanoaggregates and Its Explosive Sensing Application vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.908
  10. Synthesis of Highly Fluorescent Diquinaldinatoalumino Silole Derivatives vol.19, pp.27, 2006, https://doi.org/10.1002/chem.201300728
  11. Fluorene based fluorescent and colorimetric chemosensors for selective detection of cyanide ions in aqueous medium and application of logic gate vol.173, pp.None, 2006, https://doi.org/10.1016/j.microc.2021.107018